Que anticipa al conocer el valor del discriminante en la formula general?
Respuestas a la pregunta
Fórmula General: x = ( - b ± √b² - 4ac ) / 2
El valor del Discriminante (Que usualmente es representado por un triángulo '∆') de la Fórmula general (Señalado en Negrita), dependiendo el valor que tenga, determinará si la fórmula arrojará una, dos, o ninguna solución entre los números REALES.
Si ∆ > 0, Entonces hay dos soluciones reales
Si ∆ = 0, Entonces hay una solución real
Si ∆ < 0, Entonces no hay soluciones reales.
Ejemplo si ∆ > 0:
> x = ( - 4 ± √4² - 4(1)(3) ) / 2 (1)
> x = ( - 4 ± √16 - 12 ) / 2
> x = ( - 4 ± √4 ) / 2
> x = ( - 4 ± 2 ) / 2
> x = - 2 ± 1
Soluciones: x = - 1, x = - 3
Ejemplo si ∆ = 0:
> x = ( - 4 ± √4² - 4(1)(4) ) / 2 (1)
> x = ( - 4 ± √16 - 16 ) / 2
> x = ( - 4 ± √0 ) / 2
> x = ( - 4 ) / 2
Solución: x = - 2
Ejemplo si ∆ < 0:
> x = ( - 4 ± √4² - 4(1)(5) ) / 2 (1)
> x = ( - 4 ± √16 - 20 ) / 2
> x = ( - 4 ± √-4 ) / 2
> x = ( - 4 ± 2i ) / 2
> x = - 4 ± i
Soluciones: x = - 4 + i, x = - 4 - i
( i = Unidad imaginaria, número fuera de los números reales)
Oe si puedes darme una coronita lo aceptaría mucho x'd, costo harto tiempo, y es una información completa, pwro es tu decisión al final HAJDJÁK, espero te sirva xd