Matemáticas, pregunta formulada por kellyaram65, hace 1 año

Proponga las medidas de un cilindro recto cuya capacidad sea de 1000cm3.
Compruebelo y determine el precio de la construccion si se utiliza un material que tiene un grosor de un mimometro y su costo es de un centavo el cm2

Respuestas a la pregunta

Contestado por mateorinaldi
1

Yo elegiría la forma que necesite la menor cantidad posible de material, la forma que tenga menor superficie.

Superficie total: S =  2 π r . h + 2 π r² (superficie lateral más las dos bases)

La relación entre r y h surge del volumen del cilindro.

V = π r² . h = 1000

Luego h = 1000 / (π r²)

Reemplazamos en S

S = 2 π r . 1000 / (π r)² + 2 π r²; simplificamos:

S = 2000 / r + 2 π r²

Una función es mínima (o máxima) en los puntos en que su primera derivada es nula (condición necesaria). Si es mínima la segunda derivada debe ser positiva.

Derivamos: S' = 4 π r - 2000 / r²

S'' = 4 π + 4000 / r³; positiva porque r es positivo.

S' = 4 π r - 2000 / r² = 0

Implica r = ∛(500 / π) ≅ 5,42 cm

h = 1000 / (π . 5,42²) ≅ 10,8 cm

Radio del cilindro: 5,42 cm

Altura del cilindro: 10,8 cm

La superficie es S = 2000 / 5,42 + 2 π 5,42² ≅ 553 cm²

Costo = 553 cm² . 1/100 = 5,53 unidades de moneda

Adjunto dibujo del gráfico superficie - radio donde se aprecia el valor mínimo.

Mateo.

Adjuntos:
Otras preguntas