Matemáticas, pregunta formulada por dely7286626, hace 5 meses

procedimiento plis
doy coronita si me ayudan​

Adjuntos:

Respuestas a la pregunta

Contestado por ByMari4
20

Respuesta:

Explicación paso a paso:

\Large\underline{\underline{\textbf{Leyes de exponentes}}}

\texttt{Problema 1}

  1. \mathsf{(5^{3}.2^{2}.4^{3})^{2}=(5^{3}.2^{2}.(2^{2})^{3})^{2}=(5^{3}.2^{2}.2^{6})^{2}=(5^{3}.2^{8})^{2}=5^{6}.2^{16}}
  2. \mathsf{3^{3}.3^{2}\Big(\dfrac{3^{3}.3^{4}}{3^{4}.3^{2}}\Big)=3^{5}\Big(\dfrac{3^{7}}{3^{6}}\Big)=3^{5}(3^{1})=3^{6}}
  3. \mathsf{\Big(\dfrac{3.2^{3}}{2^{2}.3^{2}}\Big)^{2}=(3^{-1}.2^{1})^{2}=3^{-2}.2^{2}}

\texttt{Problema 2}

  1. \mathsf{(5^{2})^{3}=5^{6}}
  2. \mathsf{\bigg(\Big(\dfrac{3}{7}\Big)^{2}\bigg)^{5}=\Big(\dfrac{3}{7}\Big)^{10}}
  3. \mathsf{(\dfrac{4}{5})^{4}=\dfrac{256}{625}}

\texttt{Problema 3}

  1. \mathsf{\sqrt[3]{\dfrac{81}{3}}.3^{4}.\dfrac{1}{3^{4}}=\sqrt[3]{27}.\dfrac{3^{4}}{3^{4}}=3.1=3}
  2. \mathsf{\dfrac{(\sqrt{49}.\sqrt{49}.\sqrt{49}.\sqrt{49})^{2}}{((\sqrt{49})^{2})^{3}}=\dfrac{(7.7.7.7)^{2}}{((7)^{2})^{3}}=\dfrac{(7^{4})^{2}}{7^{6}}=\dfrac{7^{8}}{7^{6}}=7^{2}=49}
  3. \mathsf{\dfrac{10^{2}.10^{3}.\sqrt[3]{1000}.10^{4}}{(\sqrt[4]{10000}.\sqrt[3]{100})^{2}}=\dfrac{10^{2}.10^{3}.10.10^{4}}{(10.10)^{2}}=\dfrac{10^{10}}{(10^{2})^{2}}=\dfrac{10^{10}}{10^{4}}=10^{6}}


dely7286626: gracias
Otras preguntas