Matemáticas, pregunta formulada por cupcake2094, hace 1 año

Problemas de optimización.De una hoja de cartón de 18 × 18 cm, deben ser recortados cuadrados iguales en las esquinas de modo que, doblando la hoja, resulte una caja que tenga la mayor capacidad posible. Hallar la medida del lado de los cuadrados para obtener ese volumen máximo

Respuestas a la pregunta

Contestado por juanga1414
4

Problemas de optimización.De una hoja de cartón de 18 × 18 cm, deben ser recortados cuadrados iguales en las esquinas de modo que, doblando la hoja, resulte una caja que tenga la mayor capacidad posible. Hallar la medida del lado de los cuadrados para obtener ese volumen máximo.

Hola!!

Lo primero que realizamos es un par de esquemas gráficos (ver archivo adjunto).

x = Lado del cuadrado que debemos hallar

Sabemos que el volumen de un prisma de base cuadrada:  V = L² × h

V = (18 - 2x)² × x

V = 4x³ - 72 x² + 324x        Función Objetivo


Debemos estudiar las restricciones para que los valores hallados tengan una lógica:

Restriccion 1)     x > 0

Restriccion 2)  18 - 2x > 0  ⇒

- 2x > - 18 ⇒

2x < 18 ⇒

x  < 18/2 ⇒

x  <  9     Ver desarrollo completo en archivo adjunto


V = 4x³ - 72x² + 324x    ⇒ Derivada Primera

V' = 12x² -144x + 324   ⇒

V' = 0  ⇒

12x² -144x + 324   = 0     Resuelvo por Fórmula General (ver archivo adjunto)

x₁ = 9  ×××××  No está dentro del Dominio

x₂ = 3      ⇒

Lado del Cuadrado x = 3 cm

V' = 12x² -144x + 324      

X₁ = 9   ;  x₂ = 3  Puntos críticos

Hallo derivada segunda para saber si se trata de un máximo o un mínimo:

V" = 24x -144  

Sustituyo   el valor de " x " en V"   ⇒

V"(3) = 24×3 - 144 = -72 <  0

Sabemos que si f"(x) <  0    Concavidad Negativa   ⇒ Máximo


x = 3  Maximiza el Volumen de la caja

V.Max = 4x³ - 72x² + 324x

V.Max = 4(3)³ - 72(3)² + 324(3)

V.Max = 432 cm³      Volumen Máximo


Dejo un archivo con los esquemas gráficos y los cálculos detallados.

Espero haber ayudado!!!

sALUDOS!!

Adjuntos:

marucuevas628pa49nh: hola me ayudas
Otras preguntas