Presentar un informe resumido, con ejemplos propios, de los casos de factoreo expuestos?
Respuestas a la pregunta
Respuesta:
1. FACTOR COMUN • Es el primer paso que se debe hacer cuando se va a factorizar un polinomio. • ¿Cómo se factoriza? -El factor debe estar en todos los términos que compone el polinomio. -En las variables, sacar la base con el menor exponente. -En los números, sacar el mayor factor entre ellos. -Se multiplica el factor común por el polinomio.
3. EJEMPLO • Factorice el siguiente polinomio: 12x3y 4 - 36x2y5 – 54x4y6 • Mayor Factor Común: 6x2y4 • Factorización: 6x2y4(2x – 6y – 9y2x2) • Ahora prueba con el siguiente polinomio: 64s8t6 – 48s5t3+72s6t3
4. 2. DIFERENCIA DE CUADRAD-Cuando haya un binomio. -Cuando los dos términos son cuadrados perfectos. -En medio de los dos términos hay una resta.Formar dos binomios, uno suma y otro resta de las raíces cuadradas, multiplicándose entre si.
5. EJEMPLO • Factorice el siguiente polinomio: 16r2 – 49 • Raíces cuadradas: 4r y 7 • Factorización: (4r - 7)(4r + 7) • Ahora prueba con el siguiente polinomio: 81x2 - 121
6. 3. DIFERENCIA DE CUBOSCuando hay un binomio. -Cuando los dos términos son cubos perfectos. -En medio de los dos términos hay una raiz
8. 4. SUMA DE CUBOS • -Cuando hay un binomio. -Cuando los dos términos son cubos perfectos. -En medio de los dos términos hay una suma.
10. 5. TRINOMIO CUADRADO PERFECTO • -Cuando hay un trinomio. -Cuando el primer y último término son cuadrados perfectos y positivos. -El segundo término es el doble del producto de las raíces cuadradas de los términos cuadrados perfectos. • ¿Cómo se factoriza? -Se saca la raíz cuadrada de cada término cuadrado perfecto. -Se forma una resta de las dos raíces cuadradas elevada al cuadrado, si el segundo término del trinomio es negativo. - Se forma una suma de las dos raíces cuadradas elevada al cuadrado, si el segundo término del trinomio es positivo.
11. EJEMPLO • Factorice el siguiente polinomio: x2 + 6x + 9 • Raíces cuadradas del primer y último término: x y 3 • Factorización: (x + 3)2 • Ahora prueba con el siguiente polinomio: x4 – 10x2 + 25
12. 6. TRINOMIOS DE LA FORMA x2+bx+c • ¿Cuándo lo utilizo? -Es un trinomio. -El coeficiente de la variable cuadrática es uno. -Un término (variable) es cuadrado perfecto. -
14. 7. TRINOMIOS DE LA FORMA ax2+bx+c • ¿Cuándo lo utilizo? -Es un trinomio. -El coeficiente de la variable cuadrática es mayor a uno. -Un término (variable) es cuadrado perfecto. -La raíz cuadrada de la variable está en el término del medio.
Explicación paso a paso:
es eso y de ahi as un resumen