Presenta graficamente como haaser una cuenta google
porfa ayuda doy corona ala mejor respuesta
Respuestas a la pregunta
Respuesta:
Me entero a través de una mención de bolorsociedad en Twitter (que también hicieron después javierarmentia y DrCooper3_14) que a partir de ayer mismo ya se pueden representar gráficamente funciones (por ahora únicamente de una variable) con Google. Sí, sí, con el buscador. Simplemente hay que escribir en la caja de texto habitual la expresión de la función que queramos representar y nos aparecerá la gráfica de la misma como primer resultado de la búsqueda. Y en este punto no está de más recordar que las potencias se escriben con el símbolo ^ (por ejemplo x^3 representa a x^3) y las raíces cuadradas con sqrt (por ejemplo, sqrt(x) representa a \sqrt{x}).
Como ejemplo de representación, ésta es la de f(x)=x^2+1:
Según este post del blog oficial de Google, esta nueva función nos da la posibilidad de representar gráficamente una gran cantidad de funciones, incluyendo trigonométricas, exponenciales, logarítmicas, y composiciones de todas ellas.
Por otra parte, también se puede representar varias funciones a la vez. Por ejemplo, así queda la representación conjunta de f(x)=x+2, g(x)=cos(x), h(x)=\sqrt{25-x^2}, i(x)=-\sqrt{100-2x^2}:
También se puede hacer zoom en las gráficas. Vamos a hacerlo con la función f(x)=\sin{\frac{1}{x}}:
Zoom de acercamiento
Zoom de alejamiento
Vamos, que a partir de ahora con Google podemos dibujar desde la función f(x)=\cos{(1-e^x)}, por cuya gráfica me han preguntado por mail hace poco
como este corazón que nos enseñan a dibujar en el blog de Google. Una nueva opción de Google que aunque está comenzando parece que promete.
Decía ayer Javier Armentia en su Twitter que Google al final iba a parecerse a Wolfram|Alpha. Y es cierto que con esta nueva opción que ha añadido Google el buscador adquiere una característica que Wolfram|Alpha ya poseía hace tiempo. ¿Qué os parece esto? Al hilo de esto, bolorsociedad comentaba que era mejor tener todo en un sitio que en 50 sitios distintos. ¿Qué pensáis sobre ello? ¿Es bueno o malo? Como siempre, los comentarios están a vuestra disposición.
Explicación: