porque alas parabolas se les llama cuadraticas
Respuestas a la pregunta
Objetivos de Aprendizaje
· Graficar ecuaciones cuadráticas en el eje de coordenadas.
· Definir e identificar las raíces de una ecuación cuadrática.
Introducción
Además de las funciones lineales, uno de los tipos más comunes de funciones polinomiales con las que trabajamos en el álgebra es la función cuadrática. Una función cuadrática es una función que puede ser descrita por una ecuación de la forma y = ax2 + bx + c, donde a ≠ 0. Ningún término en la función polinomial tiene un grado mayor que 2. Las funciones cuadráticas son útiles cuando trabajamos con áreas, y frecuentemente aparecen en problemas de movimiento que implican gravedad o aceleración.
Las gráficas de las funciones cuadráticas tienen características que están estrechamente relacionadas con su forma simbólica. A medida que exploremos estas gráficas, aprenderemos a identificar estas características, y veremos algunas de las maneras de estructurar las ecuaciones cuadráticas.
Graficando con Puntos
Una función cuadrática es un polinomio de grado 2, es decir, el exponente más alto en la variable es 2. Los siguientes son ejemplos de funciones cuadráticas:
La función cuadrática más básica y simple tiene la ecuación . Si hacemos una tabla con los valores de esta función, vemos que el rango (los valores de y, o salida) no se comportan como una función lineal. En una función lineal, el valor de y cambia por la misma cantidad cada vez que el valor de x aumenta por 1. Eso no sucede con una función cuadrática: