Matemáticas, pregunta formulada por acartagena674, hace 1 año

Porfavor me Ayudan!

Desde un globo H ubicado a 42 m zobre el nivel del mar , se observa una gabiota G, que esta a 20 metros del globo, con un angulo de elevacion de 7° .en la vertical la gabiota hay un Pez P a 8 metros bajo el nivel del mar

¿ cual es la distancia entre la gabiota y el pez

Adjuntos:

Respuestas a la pregunta

Contestado por Gatsuo
158
Datos del triángulo de arriba: 
Hipotenusa = 20m
Ángulo 7°

Para saber la distancia entre la gabiota y el pez necesitamos el cateto opuesto

Utilizamos la función del seno
SenoФ° = Cateto opuesto / Hipotenusa

Sustituimos los datos del problema:
Seno 7° = Cateto opuesto / 20m

Despejamos el Cat. opuesto

Sen 7° x 20m = Cat. opuesto
0.12 x 20m = 2.4m

Ahora sumamos las tres medidas de la línea derecha vertical:
2.4m + 42m + 8m = 52.4m

Respuesta = 52.4m

Contestado por carbajalhelen
12

La distancia entre la gaviota y el pez es:

52.43 m

¿Cómo relacionar los lados de un triángulo y sus ángulos?

Si, un triángulo es rectángulo se puede resolver o conseguir sus lados mediante:

  • Teorema de Pitágoras, es una formula que relaciona los tres lados del triángulo.

        h² = a² + b²

  • Razones trigonométricas, es la relación que forman los catetos de un triángulo rectángulo con sus ángulos y las funciones trigonométricas.

        Sen(α) = Cat. Op/Hip

 Cos(α) = Cat. Ady/Hip

 Tan(α) = Cat. Op/Cat. Ady

¿Cuál es la distancia entre la gaviota y el pez?.

La distancia es GP, esta se puede descomponer en tres tramos;

GP = GH + HM + MP

Siendo;

  • HM = 42 m
  • MP = 8 m

Aplicar razones trigonométricas;

Sen(7°) = GH/20

Despejar GH;

GH = 20 Sen(7°)

GH = 2.43 m

Sustituir;

GP = 2.43 + 42 + 8

GP = 52.43 m

Puedes ver más sobre razones trigonométricas aquí:  https://brainly.lat/tarea/3420591

Adjuntos:
Otras preguntas