Física, pregunta formulada por tiffanyarmy, hace 3 meses

porfavor es para hoy doy coronita lo juro ayúdenme

Adjuntos:

Respuestas a la pregunta

Contestado por LuisVerSi
1

Respuesta:

 \vec{B} \times \vec{A} = ( 3, -6, 3)

Explicación:

Reescribimos los vectores como combinación lineal de los vectores canónicos:

\vec{A} = i + 2j + 3k \\  \\ \vec{B} = 4i + 5j + 6k

Ahora obtenemos el producto punto con ayuda de los vectores canónicos:

\vec{B} \times \vec{A} =  \begin{vmatrix}i&j&k \\  4 &5&6  \\ 1&2 &3\end{vmatrix} \\  \\  = \begin{vmatrix}5 &6 \\ 2&3   \end{vmatrix}i - \begin{vmatrix}4 &6 \\ 1&3  \end{vmatrix}j + \begin{vmatrix}4 &5 \\ 1&2 \end{vmatrix}k \\  \\  = (3(5) - 2(6))i - (3(4) - 1(6))j + (2(4) - 1(5))k \\  \\  = (15 - 12)i - (12 - 6)j + (8 - 5)k \\  \\  = 3i - 6j + 3k

Como obtuvimos el vector B x A como combinación lineal de los vectores canónicos, reescribimos como vector de componente.

\vec{u} = \vec{B} \times \vec{A} = (3, - 6,3)

Otras preguntas