PORFA si la cuerda de un pendulo se acorta a la mitad de su longitud original ,¿cual es la alteracion del periodo y cual es la frecuencia?
Respuestas a la pregunta
Contestado por
0
se sabe que el periodo de un péndulo simple es
2π
si se recorta a la mitad, obtendremos:
2π
entonces, comenzamos a trabajar partiendo de esta nueva ecuación:
T₂ = 2π
aplicamos leyes de los exponentes (que también aplican para raíces) para separar al dos que está dentro de la raíz:
T₂ = 2π 1/√2
despejando del otro lado de la ecuación la raiz de dos, nos queda:
T₂ √2 = 2π
pero recordando que:
T₁ = 2π
entonces:
T₂√2 = T₁
Por lo tanto:
T₂ =
Para la frecuencia, se sabe que:
f =
Por lo tanto:
=
finalmente, despejando, tenemos que
f₂ = f₁√2
2π
si se recorta a la mitad, obtendremos:
2π
entonces, comenzamos a trabajar partiendo de esta nueva ecuación:
T₂ = 2π
aplicamos leyes de los exponentes (que también aplican para raíces) para separar al dos que está dentro de la raíz:
T₂ = 2π 1/√2
despejando del otro lado de la ecuación la raiz de dos, nos queda:
T₂ √2 = 2π
pero recordando que:
T₁ = 2π
entonces:
T₂√2 = T₁
Por lo tanto:
T₂ =
Para la frecuencia, se sabe que:
f =
Por lo tanto:
=
finalmente, despejando, tenemos que
f₂ = f₁√2
Otras preguntas