Matemáticas, pregunta formulada por PhzyChlon, hace 1 año

Porfa es para hoy 15 pts, pongan el procedimiento porfa.
La suma de los ángulos internos de un poligono regular es 1 980°.
Cuantas diagonales tiene dicho polígono?

Respuestas a la pregunta

Contestado por andiamo
4
Hola.

Una forma de resolver este problema es encontrando el numero de lados del poligono, sabiendo la suma de sus angulos internos usamos la formula

α = 180 * (N - 2)

Siendo

α = La suma de los angulos internos
N = Numero de lados del poligono

Tenemos

α = 180 * (N - 2)
1980 = 180*(N-2)
1980 / 180 = N - 2
11 = N - 2
11 + 2 = N
N = 13

13 lados tiene el poligono

Ahora que sabemos cuantos lados tiene el poligono, usamos la formula para encontrar sus diagonales

D =  \frac{N(N-3)}{2}

Tenemos

D =  \frac{13(13-3)}{2}
D =  \frac{13*(10)}{2}
D =  \frac{130}{2}
D = 65

R.- El poligono tiene 65 diagonales (13 lados)

Un cordial saludo


PhzyChlon: hola
PhzyChlon: gracias por tu respuesta justo lo termine de hacer antes de que respondieras pero te ganaste los puntos ya que igual respondiste eso no es tu problema :)
PhzyChlon: y si
PhzyChlon: me salio lo mismo
PhzyChlon: de respuesta
Otras preguntas