por que para medir un campo electrico se emplean cargas pequeñas
Respuestas a la pregunta
Respuesta:
El campo eléctrico es un concepto similar al de campo gravitacional. En ambos, existe una fuerza que actúa a distancia, lo que no fue fácil de aceptar para los pensadores antiguos. La idea de campo se extiende de toda carga hacia fuera e invade todo el espacio. Cuando se coloca una segunda carga cerca de la primera, "siente" una fuerza debido a que el campo eléctrico está allí. Se considera que el campo eléctrico en el lugar de la segunda carga interactúa directamente con esa carga para producir la fuerza.
Se puede medir y cuantificar el campo eléctrico que rodea una carga, un grupo de cargas o una distribución continua de cargas midiendo la fuerza sobre una carga de prueba positiva y pequeña. Por carga de prueba debe entenderse una carga positiva tan pequeña que no altere la distribución de las demás cargas, que son las que provocan el campo que se está midiendo.
Para mayor claridad, supongamos una carga positiva única Q, a la cual deseamos medir su campo mediante la colocación de una carga de prueba q (positiva y pequeña) en los puntos a, b y c.
Sabemos que las fuerzas se dirigen radialmente hacia fuera de Q y que su magnitud está dada por la Ley de Coulomb.
El campo eléctrico en cada uno de esos puntos a, b y c se define en términos de la fuerza sobre esa carga de prueba.
El campo eléctrico E, en cualquier punto del espacio se define como la fuerza F que se ejerce sobre una carga de prueba en ese punto, dividida entre la magnitud q de la carga de prueba:
E = F/q
Notemos que esta definición es similar a la de campo gravitacional en que g es el campo gravitacional y Fg es la fuerza gravitacional que actúa sobre una masa de prueba m: g = Fg/m.
Con esta definición vemos que la dirección del campo eléctrico en cualquier punto en el espacio se define como la dirección de la fuerza sobre una carga positiva de prueba en ese punto. La magnitud del campo eléctrico es la fuerza por unidad de carga, de modo que E se mide en Newton/Coulomb (N/C)
Explicación: