Contabilidad, pregunta formulada por melanymia14, hace 10 meses

por favor son problemas de logaritmo ayudenme

Adjuntos:

melanymia14: quiero la solucion porque ya tengo los resultados

Respuestas a la pregunta

Contestado por Usuario anónimo
1

Explicación:

1.

 log_{ \frac{1}{3} }(27)

 log_{ {3}^{ - 1} }( {3}^{3} )

 \frac{3}{ - 1}

 - 3

2.

 log_{ \sqrt[5]{5} }( \sqrt[6]{25} )

 log_{ {5}^{ \frac{1}{5} } }( {5}^{ \frac{1}{3} } )

 \frac{ \frac{1}{3} }{ \frac{1}{5} }

 \frac{5}{3}

3.

e =  log_{2}(128)  - 3 log_{4}(256) + 2 log_{ \sqrt{3} }(27)

e =7 - 3 \times 4 + 2 log_{ {3}^{ \frac{1}{2} } }( {3}^{3} )

e = 7 - 12 +  log_{ {3}^{ \frac{1}{2} } }( {3}^{6} )

e =  - 5 +  \frac{6}{ \frac{1}{2} }

e =  - 5 + 12

e = 7

4.

m  =  {1024}^{ log_{2}(3) }

m =  {2}^{10 log_{2}(3) }

m =  {2}^{ log_{2}( {3}^{10} ) }

m =  {3}^{10}

5.

 log_{ \sqrt[3]{2} }(64)

 log_{ {2}^{ \frac{1}{3} } }( {2}^{6} )

 \frac{6}{ \frac{1}{3} }

18

6.

 log(x)  = 4 -  log(625)

 log_{10}(x)  +  log_{10}(625)  = 4

 log_{10}(625x)  = 4

 {10}^{ log_{10}(625x) }  =  {10}^{4}

625x = 10 \: 000

x = 16

7.

p =  \frac{ log_{1000}(125) }{4 log(25)  }

p =  \frac{ log_{ {10}^{3} }( {5}^{3} ) }{4 log_{10}( {5}^{2} ) }

p =  \frac{ \frac{3}{3}  log_{10}(5) }{4 \times 2 log_{10}(5) }

p =  \frac{1}{8}

8.

a =  log_{4}( log_{5}(2 +  log_{5}(125)  {)}^{2}   {)}^{2}

a =  log_{4}( log_{5}(2 + 3 {)}^{2}  ) {)}^{2}

a =  log_{4}( log_{5}(25)  {)}^{2}

a =  log_{4}(2 {)}^{2}

a = 1

9.

 {x}^{ \frac{1}{2} }  =  log_{2}( log_{2}(256) )

 {x}^{ \frac{1}{2} }  =  log_{2}(8)

 {x}^{ \frac{1}{2} }  = 3

x =  \sqrt{3}

10.

 {3}^{2 log_{3}(x - 2) }  = 16

 {3}^{ log_{3}(x - 2 {)}^{2}  }  = 16

(x - 2 {)}^{2}  = 16

 {x}^{2}  - 4x + 4 = 16

 {x}^{2}  - 4x - 12 = 0

x =  \frac{ - ( - 4) +  \sqrt{( - 4 {)}^{2}   - 4(1)( - 12)} }{2(1)}

x =  \frac{4 +  \sqrt{64} }{2}

x =  \frac{12}{2}

x = 6

11.

 {5}^{ log_{5}(4x - 5) }  +  {2}^{ log_{2}(2x + 1) }  = 4(x + 6)

4x - 5 + 2x + 1 = 4x + 24

2x = 28

x = 14

12.

p =  {2}^{ log_{3} {8}^{ log_{4}(3) }  }

p =  {2}^{ log_{3} {3}^{ log_{4}(8) } }

p =  {2}^{ log_{3} {3}^{ log_{ {2}^{2} } {2}^{3}  }  }

p =  {2}^{ log_{3} {3}^{ \frac{3}{2} }  }

p =  {2}^{ \frac{3}{2}  log_{3}(3) }

p =  {2}^{ \frac{3}{2} }

p =  \sqrt{2}  \times  \sqrt{ {2}^{2} }

p = 2 \sqrt{2}

psdt: si te ayudé sígueme y ponme como mejor respuesta :)

Otras preguntas