Matemáticas, pregunta formulada por Usuario anónimo, hace 5 meses

Por favor lo necesito ahora y resueltos

Adjuntos:

Respuestas a la pregunta

Contestado por IvyChen
0

Respuesta:

(4x + 5) + (3x + 2) =  \\ 4x + 5 + 3x + 2 =  \\ (4x + 3x) +(5 + 2 ) =  \\ 7x + 7

(5x  - 5) + (4x - 7) =  \\ 5x - 5 + 4x - 7 =  \\ (5x + 4x) + ( - 5 - 7) =  \\ 9x + ( - 12) =  \\ 9x -1 2

 (3w - 7) - (w - 1) =  \\ 3w - 7 - w + 1 =  \\ (3w - w) + ( - 7 + 1) =  \\ 2w + ( - 6) =  \\ 2w - 6

( {x}^{2} + 5x ) - ( {x}^{2}  - 4x) =  \\  {x}^{2}  + 5x -  {x}^{2}  + 4x =  \\ ( {x}^{2}  -  {x}^{2} ) + (5x + 4x) = \\  9x

(2x + 3 {x}^{3} y) + (4x + 2 {x}^{2}y +  {y}^{3}  ) =  \\ 2x + 3 {x}^{3} y + 4x + 2 {x}^{2} y +  {y}^{3}  =  \\ (2x + 4x) + 3 {x}^{3} y + 2 {x}^{2} y  + {y}^{3}  =  \\ 6x + 3 { x }^{3} y + 2 {x}^{2} y +  {y}^{3}

(3 {x}^{2}  + xy +  {z}^{4} )  - ( - 3 {x}^{2}  + 4xy -  {z}^{4} ) =  \\ 3 {x}^{2}  + xy +  {z}^{4}   + 3 {x}^{2}  - 4xy +  { z}^{4} =   \\ (3 {x}^{2} + 3  {x}^{2}  ) + (xy - 4xy) + ( {z}^{4}  +  {z}^{4} ) =  \\ 6 {x}^{2}  + ( - 3xy) + 2 {z}^{4}  =  \\ 6 {x}^{2}  - 3xy + 2 {z}^{4}

Otras preguntas