´por fa me ayudan a este problema, por favooor.
Un propietario tiene 60 metros de alambre y desea usarlo para rodear un huerto rectangular. ¿Cuáles deben ser las dimensiones del huerto para que quede encerrada el área máxima?
Respuestas a la pregunta
Contestado por
0
Respuesta:
x = 15 m
y = 15 m
Explicación paso a paso:
- Datos.
Lango = y
Ancho = x
- Perímetro
P = 2x + 2y
60 m = 2x + 2 y
60 m = 2(x + y)
60 m / 2 = x + y
x + y = 30 m.
Entonces:
x + y = 30
y = 30 - x
- Area
A = x × y
A = x (30 - x)
A = 30x - x²
- Luego sacamos la Derivada de A
A(x) = 30x - x²
A'(x) = 30 - 2x
Entonces la derivada igualamos a 0
A'(x) = 0
30 - 2x = 0
- 2x = -30
x = 30/2
x = 15
Reemplazamos x para determinar y
y = 30 - x
y = 30 - 15
y = 15
Solucion : Las dimensiones deben ser x = 15m e y = 15m
*Para optimizar el area maxima el rectagulo debe ser un cuadrado.
Otras preguntas