podrían resolverlo con procedimiento, resultado y comprobación por favor
método GRÁFICO
problema uno
3a + 2b = 9
2a + b = 5
problema dos
2x + 3y = -1
3x + 4y = 0
Respuestas a la pregunta
Explicación paso a paso:
problema uno:
3a + 2b = 9
2a + b = 5
---------------
b=(9-3a)/2
b=5-2a
Igualamos
(9-3a)/2 =5-2a
9-3a=2(5-2a)
9-3a=10-4a
-3a+4a=10-9
a=1
b=5-2a
b=5-2(1)
b=5-2
b=3
Comprobación
3a + 2b = 9
3(1)+2(3)=9
3+6=9
9=9
2a + b = 5
2(1)+3=5
2+3=5
5=5
Como te pide por método gráfico usaras las ecuaciones despejadas donde a estará en el eje de las x y b en el eje vertical o de la " y". Para graficar puedes asignar valores arbitrarios a "a" para obtener "b".
Primera función
Punto (x, y)
b=(9-3a)/2
b=(9-3(0))/2 =9/2= 4.5 punto (0, 4.5)
b=(9-3(1))/2=6/2=3 punto (1, 3)
b=(9-3(2))/2=3/2=1.5 punto (2, 1.5)
b=(9-3(3))/2=0/2=0 punto (3, 0)
Segunda función
b=5-2a
b=5-2(0)=5 punto (0, 5)
b=5-2(1)=5-2=3 punto (1,3)
b=5-2(2)=5-4=1 punto (2,1)
b=5-2(3)=5-6= -1 punto (3, - 1)
Esos puntos son los que debes graficar y como puedes ver en ambas funciones el punto en común que tienen es (1,3) que son las respuestas al sistema de ecuación.
--------------------------------------------------
SEGUNDO PROBLEMA
2x + 3y = -1
3x + 4y = 0
-----------------
y=( - 1-2x)/3
y=-3x/ 4
Igualamos
( - 1-2x)/3 = - 3x/4
4(-1 - 2x)= 3(-3x)
-4-8x= -9x
9x-8x=4
x=4
Para y
y= - 3x/4
y= - 3(4)/4
y= - 3
Comprobación:
2x + 3y = -1
2(4)+3(-3)= - 1
8-9= - 1
-1= - 1
3x + 4y = 0
3(4)+4(-3)=0
12-12=0
0=0
Dadas las ecuaciones despejadas asignaremos valores a x para hayar " y" las cuales serán las coordenadas a graficar
y=( - 1-2x)/3
y=(-1-2(1))/3= - 3/3= - 1 punto (1, - 1)
y=(-1-2(2))/3= - 5/3 punto (2, - 5/3)
y=(-1-2(3))/3=-7/3 punto (3, - 7/3)
y=(-1-2(4))/3= - 9/3= -3 punto (4, -3) <
Segunda función
y=-3x/4
y=-3(1)4/ = - 3/4 punto (1, - 3/4)
y= - 3(2)/4= -3/2 punto (2, - 3/2)
y= -3(3)/4= -9/4 punto (3, - 9/4)
y= -3(4)/4= - 3 punto (4, - 3) <
Para graficar las fracciones divides y como los valores de "y" son con signo negativo vas a dibujar los 4 cuadrantes donde y negativo. Por ejemplo
y
|
|
-x _______|_______x
|
|
|
-y