Matemáticas, pregunta formulada por blackrose7, hace 1 año

¿Podrían ayudarme por favor?

En un concurso de matemáticas financieras que se realizó se repartió un premio de $ 100,00.00 entre los tres finalistas, en forma inversa al tiempo que se tardaron en resolver el conjunto de problemas y al número de problemas mal hechos. Si un concursante tardo 65
minutos en resolver los problemas y tuvo 3 mal; otro concursante tardo
55 minutos y tuvo 2 problemas mal y el tercero tardo 45 minutos y tuvo 4
mal,

¿Cuánto recibió cada alumno concursante?

Respuestas a la pregunta

Contestado por oskarsian96
4

Respuesta:

Concursante  1 = $ 25,933.2

Concursante 2 = $ 45,972.4

Concursante 3 = $ 28,094.3

   

Explicación paso a paso:

  Una relación inversa es de la siguiente forma (en forma de función):

f(x) = k/x

Donde k es una constante.

 

  Como el dinero se reparte en forma inversa al tiempo empleado y el número de problemas mal hechos, significa que a mayor tiempo y mayor números de problemas mal hechos menor dinero reciben. Tomando como base la función de arriba el dinero se reparte de la siguiente forma:

 

Concursante  1 = 65 min. y 3 prob. malos = k / (65*3) ⇒ k / 195

Concursante 2 = 55 min. y 2 prob. malos = k / (55*2) ⇒ k / 110

Concursante 3 = 45 min. y 4 prob. malos = k / (45*4) ⇒ k / 180

  La suma del dinero repartido a cada concursante es igual a $ 100,000:

k / 195 + k / 110 + k / 180 = 100,000

 

  Se simplifica la ecuación y se resuelve para k:

k(1/195 + 1/110 + 1/180) = 100,000

k(0.0198) = 100,000

k = 100,000/0.0198

k = 5 056,966.7

 

  Se halla cuánto recibió cada concursante:

Concursante  1 = k / 195 ⇒ 5 056,966.7÷195 = $ 25,933.2

Concursante 2 = k / 110 ⇒ 5 056,966.7÷110 = $ 45,972.4

Concursante 3 = k / 180 ⇒ 5 056,966.7÷180 = $ 28,094.3

                                                                           =============

                                                                              $ 100,000  

*El concursante 2 recibe más dinero debido a que se tardó menos y tuvo el menor número de errores.


blackrose7: Muchas gracias uwu
Otras preguntas