piensa en tres movimientos y describelos representa las trayectorias que realiza
Respuestas a la pregunta
En cinemática, trayectoria es el lugar geométrico de las posiciones sucesivas por las que pasa un cuerpo en su movimiento. La trayectoria depende del sistema de referencia en el que se describe el movimiento; es decir el punto de vista del observador.
En la mecánica clásica la trayectoria de un cuerpo puntual siempre es una línea continua. Por el contrario, en la mecánica cuántica hay situaciones en las que no es así. Por ejemplo, la posición de un electrón en un orbital de un átomo es probabilística, por lo que la trayectoria corresponde más bien a un desplazamiento.
Explicación:
(1) En un sistema coordenado móvil de ejes rectangulares xyz, de origen O, las componentes del vector r son las coordenadas (x,y,z) de la partícula en cada instante. Así, el movimiento de la partícula P quedará completamente especificado si se conocen los valores de las tres coordenadas (x,y,z) en función del tiempo. Esto es
{\displaystyle x=x(t)\qquad y=y(t)\qquad z=z(t)}{\displaystyle x=x(t)\qquad y=y(t)\qquad z=z(t)}
En el caso de que la trayectoria sea plana, esto es, contenida en un plano, si convenimos en que dicho plano sea el xy, será z=0 y podemos eliminar el tiempo t entre las dos primeras ecuaciones para obtener la ecuación de la trayectoria plana en forma implícita, f(x,y)=0, o en forma explícita, y=y(x).
(2) Las ecuaciones paramétricas de la trayectoria conducen a una ecuación de la trayectoria plana en forma implícita, f(x,y)=0, o en forma explícita, y=y(x)2) Las ecuaciones paramétricas de la trayectoria conducen a una ecuación vectorial
(2) Las ecuaciones paramétricas de la trayectoria conducen a una ecuacion vectorial.
que es la ecuación vectorial del movimiento.