Matemáticas, pregunta formulada por sofiavflores12, hace 10 meses

Para el día del estudiante los alumnos del grupo A compraron hamburguesas y refrescos. Un equipo compró 6 hamburguesas y 2 refrescos y pagaron $260. Otro equipo compró, a los mismos precios, 4 hamburguesas y 5 refrescos y pagaron $210. ¿Cuánto les costó cada hamburguesa y cada refresco? r= refrescos h= hamburguesas
Aiuda plis :'(

Respuestas a la pregunta

Contestado por loving22012
2

Respuesta:

Das el valor x para el precio de las hamburguesas y el valor y para el precio de los refrescos.

Para el primer equipo, la ecuación que debes escribir sería:

6*x + 2*y = $260

Y para el otro equipo, la ecuación sería:

4*x + 5*y = $210

Luego lo que tienes que hacer es un sistema de ecuaciones.

Yo lo voy a hacer por igualación pero tú hazlo como te sea más fácil :)

- Si lo hago por igualación tengo que multiplicar la primera ecuación por 5 y la segunda ecuación por -2. Una vez hecho eso, luego las sumas.

Si hago esto, las y se van y quedaría: 22x = 880. Divides 880/22 y el resultado de x sería 40

Como ya tienes la x, para saber  la y, lo único que debes hacer es sustituir la x por 40 en la primera ecuación.

Con lo cual me quedaría:

240 + 2y = 260

2y = 260 - 240

2y = 20

y = 10

Solución: Cada hamburguesa ha costado $40 y cada refresco ha costado $10

Oh si, la h es la x  y la r es la y


sofiavflores12: muchas gracias :´D
loving22012: De nada :)
Otras preguntas