Ordena y compara los siguientes números, usando símbolos del lenguaje matemático: 56.245; 35.248; 78.469; 5.625; 78.421.
Respuestas a la pregunta
Respuesta:
te voy ayudar espero que te ayude
Explicación paso a paso:
x = y significa: x y y son nombres diferentes para precisamente la misma cosa.
1 + 2 = 6 − 3
:=
≡
:⇔
definición se define como todos
x := y o x ≡ y significa: x se define como otro nombre para y (notar, sin embargo, que ≡ puede también significar otras cosas, como congruencia)
P :⇔ Q significa: P se define como lógicamente equivalente a Q
cosh x := (1/2)(exp x + exp (−x)); A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
Aritmetica
Símbolo Nombre se lee como Categoría
+
adición mas aritmética
4 + 6 = 10 significa que si a cuatro se le agrega 6, la suma, o resultado, es 10.
43 + 65 = 108; 2 + 7 = 9
−-
substracción menos aritmética
9 − 4 = 5 significa que si 4 es restado de 9, el resultado será 5. El símbolo 'menos' también se utiliza para denotar que un número es negativo. Por ejemplo, 5 + (−3) = 2 significa que si 'cinco' y 'menos tres' son sumados, el resultado es 'dos'.
87 − 36 = 51
×
·
*
multiplicación por aritmética
significa que si se cuenta siete veces seis, el resultado será 42.
÷
/
división entre aritmética
significa que si se hace seis pedazos uniformes de cuarenta y dos, cada pedazo será de tamaño siete.
24 / 6 = 4
∑
sumatoria suma sobre ... desde ... hasta ... de aritmética
∑k=1n ak significa: a1 + a2 + ... + an
∑k=14 k2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30
∏
producto producto sobre... desde ... hasta ... de aritmética
∏k=1n ak significa: a1a2···an
∏k=14 (k + 2) = (1 + 2)(2 + 2)(3 + 2)(4 + 2) = 3 × 4 × 5 × 6 = 360
Lógica proposicional
Símbolo Nombre se lee como Categoría
⇒
→
implicación material implica; si .. entonces lógica proposicional
A ⇒ B significa: si A es verdadero entonces B es verdadero también; si A es falso entonces nada se dice sobre B.
→ puede significar lo mismo que ⇒, o puede ser usado para denotar funciones, como se indica más abajo.
x = 2 ⇒ x2 = 4 es verdadera, pero x2 = 4 ⇒ x = 2 es, en general, falso (yq que x podría ser −2)
⇔
↔
equivalencia material si y sólo si; ssi lógica proposicional
A ⇔ B significa: A es verdadera si B es verdadera y A es falsa si B es falsa.
x + 5 = y + 2 ⇔ x + 3 = y
∧
conjunción lógica o intersección en una reja y lógica proposicional, teoría de rejas
la proposición A ∧ B es veradera si A y B son ambas verdaderas; de otra manera es falsa.
n < 4 ∧ n > 2 ⇔ n = 3 cuando n es un número natural
∨
disjunción lógica o unión en una reja o lógica proposicional, teoría de rejas
la proposición A ∨ B es verdadera si A o B (o ambas) son verdaderas; si ambas son falsas, la proposición es falsa.
n ≥ 4 ∨ n ≤ 2 ⇔ n ≠ 3 cuando n es un número natural
¬
/
negación lógica no lógica proposicional
la proposición ¬A es verdadera si y sólo si A es falsa.
un "slash" colocado sobre otro operador es equivalente a "¬" colocado enfrente.
¬(A ∧ B) ⇔ (¬A) ∨ (¬B); x ∉ S ⇔ ¬(x ∈ S)
Respuesta:
Ordena y compara los siguientes números, usando símbolos del lenguaje matemático: 56.24; 35.248; 78.469; 5.625; 78.421. el que la responda ien le doy una coroa 5 dolares
Explicación paso a paso:
5.625<35.248<78.421<78.469