Obtener la longitud de una escalera recostada en una pared de 4 m de altura que forma un Ángulo de 60ºcon respecto al piso
Respuestas a la pregunta
Respuesta: Cateto opuesto: 4.33 metros
Ángulo: 60° (α)
Hipotenusa: longitud (l)
Explicación paso a paso: :)
Respuesta: 4.62 m es la longitud de la escalera descrita.
[Ver imagen adjunta]
Explicación paso a paso:
Tenemos que observar que la longitud de la escalera, la distancia horizontal desde la base de la escalera hasta la pared del edificio y la altura que alcanza la escalera en la pared forman un triángulo rectángulo. La altura de la escalera la medimos desde el punto donde la horizontal desde la base de la escalera toca la pared.
Datos de la imagen: altura = 4m
Ángulo escalera con la horizontal = 60º
Buscamos en las tablas o nos proporcionan el valor del sen(60º)
sen(60º) = √3/2 = 0.866025
Como tenemos un triángulo rectángulo, podemos aplicar las relaciones trigonométricas:
La longitud de la escalera es la hipotenusa y la altura de la escalera en el muro es el cateto opuesto al ángulo que forma la escalera con la horizontal.
sen(60º) = cateto opuesto➗hipotenusa
sen(60º) = altura escalera➗longitud escalera
longitud escalera = altura muro➗sen(A)
longitud escalera = 4m➗0.866025 = 4.62 metros
Respuesta: 4.62 m es la longitud de la escalera descrita.