Obten cada producto
6(3x+2)
x^2(x^2-2x+1)
(x+7)(8x-3)
(x+5)^2
(6x-3)^2
(x+/2)(x-/2)
(x-1)(2x^3+x^2+x)
(x^2+x+5)^2
Respuestas a la pregunta
Contestado por
5
6(3x+2)=18x+12
x^2(x^2-2x+1)=x^4-2x^3+x^2
(x+7)(8x-3)= 8x^2+56x-3x-21=> 8x^2+53x-21
(x+5)^2= x^2+10x+25
(6x-3)^2= 36x^2-36x+9
(x-1)(2x^3+x^2+x)= 2x^4+x^3+x^2-2x^3+2x^2-x=> 2x^4+-x^3+4x^2-x
(x^2+x+5)^2= x^4+x^2+25
x^2(x^2-2x+1)=x^4-2x^3+x^2
(x+7)(8x-3)= 8x^2+56x-3x-21=> 8x^2+53x-21
(x+5)^2= x^2+10x+25
(6x-3)^2= 36x^2-36x+9
(x-1)(2x^3+x^2+x)= 2x^4+x^3+x^2-2x^3+2x^2-x=> 2x^4+-x^3+4x^2-x
(x^2+x+5)^2= x^4+x^2+25
Contestado por
0
Respuesta:
6(3x+2)=18x+12
x^2(x^2-2x+1)=x^4-2x^3+x^2
(x+7)(8x-3)= 8x^2+56x-3x-21=> 8x^2+53x-21
(x+5)^2= x^2+10x+25
(6x-3)^2= 36x^2-36x+9
(x-1)(2x^3+x^2+x)= 2x^4+x^3+x^2-2x^3+2x^2-x=> 2x^4+-x^3+4x^2-x
(x^2+x+5)^2= x^4+x^2+25
Explicación paso a paso:
Otras preguntas