Matemáticas, pregunta formulada por nataliamelissa2986, hace 6 meses

Números que pertenezcan a R (reales) pero no a Q (racionales)

Ayudenme porfa. ​


osirisrunnersteam: Números Racionales

 
Cuando dos números enteros positivos se grafican en la recta numérica, el número a la derecha es siempre mayor que el número a la izquierda.
 
Lo mismo ocurre cuando comparamos dos números enteros o números racionales. El número a la derecha siempre es más grande que el número a la izquierda.
osirisrunnersteam: Aquí hay algunos ejemplos.
 

Números a Comparar
Comparación
Expresión Simbólica
−2 y −3
−2 es mayor que −3 porque −2 está a la derecha de −3
−2 > −3 o −3 < −2
2 y 3
3 es mayor que 2 porque 3 está a la derecha de 2
3 > 2 o 2 < 3
−3.5 y −3.1
−3.1 es mayor que −3.5 porque −3.1 está a la derecha de −3.5 (ver abajo)
−3.1 > −3.5 o
−3.5 < −3.1

Respuestas a la pregunta

Contestado por osirisrunnersteam
2

Respuesta:

Números Racionales

La fracción , el número mixto , y el decimal 5.33… (o ) representan el mismo número. Este número pertenece al conjunto que los matemáticos llaman números racionales. Los números racionales son números que pueden escribirse como la razón de dos enteros. Sin importar qué forma se usa, es racional porque el número puede escribirse como la razón de 16 sobre 3, o .

A continuación se muestran ejemplos de números racionales.

0.5, porque puede escribirse como

, porque puede escribirse como

−1.6, porque puede escribirse como

4, porque puede escribirse como

-10, porque puede escribirse como

Todos estos números pueden escribirse como la razón de dos enteros.


nataliamelissa2986: Graciass
Otras preguntas