Necesito una representación de una onda armónica con sus características y sus partes
Respuestas a la pregunta
Respuesta:
Querias una imagen
Explicación:
Respuesta:
Podemos definir una onda como una perturbación que se propaga de un punto a otro de un medio sin que exista transporte neto de materia, pero sí transmisión de energía. Cuando una onda se propaga produce variaciones en algunas propiedades del medio que pueden ser expresadas matemáticamente (por ejemplo la posición de las partículas que vibran en torno a un punto de equilibrio en una onda que se propaga en una cuerda, o la presión del aire en el caso del sonido). Si podemos expresar estas variaciones espaciales y temporales del medio mediante funciones senos o cosenos decimos que la onda es armónica. En este apartado estudiaremos las ondas armónicas unidimensionales, es decir, aquellas que se propagan en una sola dirección
Las ondas armónicas presentan una serie de parámetros que nos permiten caracterizarlas y que pasamos a definir:
Elongación: Es la separación instantánea de cada punto del medio respecto a su posición de equilibrio. Su unidad de medida en el Sistema Internacional (S.I.) es el metro (m)
Amplitud (A): Es el valor de elongación máxima. Su unidad de medida en el S.I. es el metro (m). Los valores de elongación de la onda armónica oscilan entre -A y A. A los puntos con máxima elongación (+A) se les suele llamar crestas. A los puntos en los que la elongación es mínima (-A) se les suele llamar valles
Fase (φ): Se entiende por fase el estado de vibración de un punto de la onda. Decimos que dos puntos de la onda están en fase o que tienen igual fase cuando su elongación y la velocidad de su movimiento (velocidad de vibración) coinciden. Por el contrario, decimos que dos puntos se encuentran en oposición de fase o que tienen fase opuesta cuando las respectivas elongaciones y velocidades de vibración son justo las contrarias (igual valor, distinto signo). Una vez hayamos presentado la ecuación de una onda armónica estaremos en condiciones de introducir qué es la fase matematicamente.
Longitud de onda (λ): Es la distancia entre dos puntos consecutivos que se encuentran en fase. Su unidad de medida en el S.I. es el metro (m). Refleja la periodicidad espacial de la onda armónica, ya que esta "se repite" (tiene igual forma) cada λ metros, como se evidencia en las gráficas en las que representamos la magnitud perturbada frente a la posición (gráficas y-x)
Periodo (T): Es el tiempo que tarda la onda en recorrer una distancia igual a la longitud de onda. También se puede definir como el tiempo que tarda un punto cualquiera en realizar una oscilación completa en torno a su posición de equilibrio. Su unidad de medida en el S.I. es el segundo (s). Refleja la periodicidad temporal de la onda armónica, ya que esta se repite (tiene igual forma) cada T segundos,como se evidencia en las gráficas en las que representamos la magnitud perturbada frente al tiempo (gráficas y-t)
Frecuencia (f): Es el número de oscilaciones por unidad de tiempo que un punto determinado del medio realiza en torno a su estado de equilibrio. Se define como la inversa del periodo y coincide con el número de longitudes de onda que pasan por un punto determinado del medio en una unidad de tiempo. Su unidad de medida en el S.I. es el hertzio (Hz), unidad que es la inversa del segundo (1 Hz = 1 s-1). Se trata de un parámetro característico del foco por lo que la frecuencia mantiene su valor cuando la onda cambia de medio
f=1/T
Pulsación o frecuencia angular (ω): Permite expresar la frecuencia de las ondas de forma alternativa. Su unidad de medida en el S.I. es el radián por segundo (rad/s) y se define como:
ω=2⋅π⋅f=2⋅πT
Velocidad de propagación (v): También se le conoce como velocidad de fase y es el desplazamiento efectuado por la onda por unidad de tiempo. Se puede entender como la rapidez a la que se propaga la onda. En general depende de las características del medio,como hemos visto en el caso de la velocidad de propagación de las ondas mecánicas, y no de las del foco por lo que es constante mientras el medio no modifique sus propiedades. o debe confundirse con la velocidad de vibración de las partículas individuales, como aclararemos más abajo. Su unidad de medida en el S.I. es el metro por segundo (m/s) y podemos calcularla, atendiendo a las características de la onda propagada, teniendo en cuenta que esta tarda un periodo (T segundos) en recorrer una longitud de onda (λ m), es decir:
v=λT=λ⋅f
Número de onda (k): Se define como el número de longitudes de onda u ondas completas contenidas en una longitud de 2·π metros. Su unidad de medida en el S.I. es el metro a la menos uno (m-1) ó, equivalentemente, el radián por metro (rad/m) y su expresión viene dada por:
k=2⋅πλ=ωv
El parámetro número de onda también aparece en espectroscopia donde a veces se le llama frecuencia reducida y suele definirse de manera ligeramente distinta. Se trata del número de longitudes de onda u ondas completas contenidas en una unidad de longitud: k=1/λ
Explicación