Matemáticas, pregunta formulada por gironmercy06, hace 1 año

NECESITO UN RESUMEN PARA EXPONER CON EL TEMA REGLAS DE CRAMER

Respuestas a la pregunta

Contestado por fercho132273
0

Respuesta:Se puede aplicar la regla de Cramer para resolver sistemas de ecuaciones lineales compatibles que tengan más ecuaciones que incógnitas?

La respuesta es afirmativa. Basta con obtener un sistema equivalente al inicial eliminando las ecuaciones superfluas o dependientes (proporcionales, nulas o que sean combinación lineal de otras). El procedimiento a seguir es el siguiente: Supongamos que tenemos un sistema de  m  ecuaciones lineales con  n  incógnitas, siendo  m > n  y tal que:  rango (A) = rango (A*) = n. Por lo tanto, sobran  m - n  ecuaciones. Para averiguar cuáles son las ecuaciones de las que podemos prescindir, basta encontrar en la matriz de los coeficientes ( A ) un menor de orden  n  distinto de cero, por ejemplo, el que utilizamos para averiguar el rango de la matriz  A. Las filas que intervienen en este menor son las que corresponden a las ecuaciones principales. Las restantes ecuaciones las podemos suprimir.

El siguiente botón abre una ventana que explica, mediante un ejemplo, el procedimiento a seguir.

Un sistema de Cramer es, por definición, compatible determinado. Pero, ¿Se puede aplicar la regla de Cramer para resolver sistemas de ecuaciones lineales compatibles indeterminados?

La respuesta es también afirmativa. El procedimiento a seguir es el siguiente: Supongamos que tenemos un sistema de  m  ecuaciones lineales con  n  incógnitas, tal que:  rango (A) = rango (A*) = k < n. Por lo tanto, sobran  m - k  ecuaciones y, además, hay  n - k  incógnitas no principales. Para averiguar cuáles son las ecuaciones de las que podemos prescindir, y cuáles son las incógnitas no principales, basta encontrar en la matriz de los coeficientes ( A ) un menor de orden  k  distinto de cero, por ejemplo, el que utilizamos para averiguar el rango de la matriz  A. Las filas que intervienen en este menor son las que corresponden a las ecuaciones principales o independientes. Las restantes ecuaciones las podemos suprimir. Las columnas que figuran en dicho menor corresponden a las incógnitas principales. Las incógnitas no principales las pasamos al otro miembro y pasan a formar un único término junto con el término independiente. Se obtiene, de este modo, un sistema de  k  ecuaciones lineales con  k  incógnitas, cuyas soluciones van a depender de  n - k  parámetros (correspondientes a las incógnitas no principales).

El siguiente botón abre una ventana que explica, mediante un ejemplo, el procedimiento a seguir.

La siguiente escena resuelve cualquier sistema de ecuaciones lineales compatible (determinado o indeterminado), utilizando la Regla de Cramer. El número máximo de ecuaciones y de incógnitas que puede tener el sistema es  5.


fercho132273: Espero que te aya servido
gironmercy06: muchas gracias
gironmercy06: quiero para hacer un vídeo de 3-5 minutos quiero mas teoria xfa
fercho132273: Sistema 1
Sistema 3x3
fercho132273: espero que este te ayude
Otras preguntas