Física, pregunta formulada por ah6284626, hace 1 mes

n: q1-9mc, q2=-2mc y q3=7me
ermina el valor de la fuera ra

Respuestas a la pregunta

Contestado por AmiRexD
1

General form of quadratic equation is,

ax² + bx + c = 0

In the given equation ( x²-2√2x ), we have –

  • Coefficient of x², a = 1
  • Coefficient of x, b =-2√2
  • Constant term, c = 0

To find the zeros, set the polynimial to zero and solve for x using the quadratic formula.

x²-2√2x = 0

Here, quadratic formula is given by

\longrightarrow\underline\pink{\boxed{\bf }}

  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar{\underline {\boxed{  \pink{\frak {x = \dfrac{-b±√D}{2a}}} }}} \:  \:  \:  \:  \:

Where, D refers to discriminant.

  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar{\underline {\boxed{  \pink{\frak {D(discriminant) =  {b}^{2} - 4ac }} }}} \:  \:  \:  \:  \:

Solving the polynomial –

\qquad\twoheadrightarrow \sf  x = \dfrac{-b±√D}{2a}\\

\qquad\twoheadrightarrow \sf  x =  \dfrac{-(-2\sqrt{2})  ± \sqrt{(2\sqrt{2})^2-4\times 1\times 0}}{2\times 1}\\

\qquad\twoheadrightarrow \sf  x = \dfrac{-(-2\sqrt{2})  ± \sqrt{(2\sqrt{2})^2}}{2\times 1}\\

\qquad\twoheadrightarrow \sf  x = \dfrac{-(-2\sqrt{2})  ± \sqrt{8}}{2}\\

\qquad\twoheadrightarrow \sf  x = \dfrac{-(-2\sqrt{2})  ± 2 \sqrt{2}}{2}\\

\qquad______________________

\qquad\twoheadrightarrow \sf  x = \dfrac{2\sqrt{2} + 2\sqrt{2}}{2}\\

\qquad\twoheadrightarrow \sf  x = \dfrac{4\sqrt{2}}{2}\\

\qquad\twoheadrightarrow \sf  x = 2√2\\

Or,

\qquad\twoheadrightarrow \sf  x = \dfrac{2\sqrt{2} -2\sqrt{2}}{2}\\

\qquad\twoheadrightarrow \sf  x = \dfrac{\cancel{2\sqrt{2}} -\cancel{2\sqrt{2}}}{2}\\

\qquad\twoheadrightarrow \sf  x = 0\\

\qquad______________________

Here,the sum of the zeroes is given by:-

\qquad\twoheadrightarrow\pink{\underline{\boxed{\sf \alpha+\beta=\dfrac{-b}{a}  }}}\\

\qquad\twoheadrightarrow \sf \alpha +\beta =\dfrac{- (2\sqrt{2})}{1} \\

\qquad\pink{\twoheadrightarrow \bf \alpha +\beta = -2\sqrt{2}}\\

Hence proving the sum of the roots is -b/a

\qquad______________________

Product of roots /zeroes -

\qquad\twoheadrightarrow\pink{\underline{\boxed{\sf \alpha.\beta=\dfrac{c}{a}  }}}\\

\qquad \pink{\twoheadrightarrow\bf  \alpha\beta = \dfrac{0}{1}}\\

\qquad \pink{\twoheadrightarrow\bf  \alpha\beta = 0}\\

Hence proving the product of the roots is c/a

Therefore, the relationship between the roots and the coefficients is verified.

Otras preguntas