Multiplica el MCM y el MCD en cada caso y compara el producto con el de los números en cada grupo. Escribe una conclusión.
a. 34, 18 y 28 b. 1 000 y 2 000 c. 128, 512 y 1 024
d.220, 440, 600 y 900 e. 40, 100, 200 y 360 f. 20, 28 y 36
g. 120, 135 y 278 h. 320, 450, y 620
Respuestas a la pregunta
Respuesta:
a) 34, 18, 28
Descomponiendo estos 3 números en sus factores primos se tiene:
34 = 2*17*1; 18 = 2*3² *1; 28 = 2².7.1;
De donde obtenemos el mmc y el MCD:
mcm (34,18,28) = 2².17.7.3² = 4284
MCD (34,18,28) = 2
Ahora, multipliquemos entre sí el mcm y MCD y comparemos con el producto de los 3 números:
4284.2 = 8568; 34.18.28 = 17136
∴ 8568 ≠ 17136
Se observa que los resultados de los productos entre ellos no coinciden.
b) 1000, 2000
Descomponiendo estos 2 números en sus factores primos se tiene:
1000 = 2³ . 5³ .1; 2000 = 2⁴ . 5³ . 1
De donde obtenemos el mmc y el MCD:
mcm (1000,2000) = 2⁴ . 5³ = 2000
MCD (1000,2000) = 2³ . 5³ = 1000
Ahora, multipliquemos entre sí el mcm y MCD y comparemos con el producto de los 2 números:
2000 .1000 = 2.000.000; 2000 .1000 = 2.000.000
∴ 2.000.000 = 2.000.000
Se observa que los resultados de los productos entre ellos coinciden.
c) 128, 512, 1024
Descomponiendo en sus factores primos a estos 3 números se tiene:
128 = 2⁷ .1; 512 = 2⁹ . 1; 1024 = 2¹⁰ . 1
De donde se obtiene el mmc y el MCD:
mcm (128,512,1024) = 2¹⁰.1 = 1024
MCD (128,512,1024) = 2⁷.1 = 128
Ahora, multipliquemos entre sí el mcm y MCD y comparemos con el producto de los 3 números:
1024 .128 = 131.072; 1024.512.128 = 67.108.864
∴ 131.072 ≠ 67.108.864
Se observa que los resultados de los productos entre ellos no coinciden.
d) 220, 440, 600, 900
Descomponiendo en sus factores primos a estos 3 números se tiene:
220 = 2².5.11; 440 = 2³ .5.11; 600 = 2³ 5².3; 900 = 2².5².3²
De donde se obtienen el mmc y el MCD:
mcm (220,440,600,900) = 2².5².3².11 = 19800
MCD (220,440,600,900) = 2².5 = 20
Ahora, se multiplican entre sí el mcm y MCD y comparemos con el producto de los 3 números:
19800.20 = 396.000; 220.440.600.900 = 5,2272 x 10^10
∴ 396.000 ≠ 5,2272 x 10^10
Se observa que los resultados de los productos entre ellos no coinciden.
e) 120, 135, 278
Descomponiendo en sus factores primos a estos 3 números se tiene:
120 = 2³.5.3.1; 135 = 3³. 5.1; 278 = 2.139.1
De donde se obtienen el mmc y el MCD:
mcm (120,135,278) = 2³.3³.5.2.139 = 300240
MCD (120,135,278) = 1
Ahora, se multiplican entre sí el mcm y MCD y comparemos con el producto de los 3 números:
300240 .1 = 300240; 120.135.278 = 4.503.600
∴ 300240 ≠ 4503600
Se observa que los resultados de los productos entre ellos no coinciden
f) 320, 450, 620
Descomponiendo en sus factores primos a estos 3 números se tiene:
320 = 2⁶.5.1; 450 = 2.5².3².1; 620 = 2².5.31.1
De donde obtenemos el mmc y el MCD:
mcm (320, 450, 620) = 2⁶.5².3².31.1 = 446400
MCD (320, 450, 620) = 2.5.1 = 10
Ahora, se multiplican entre sí el mcm y MCD y comparemos con el producto de los 3 números:
446400.10 = 4464000; 320.450.620 = 89280000
∴ 4464000 ≠ 89280000
Se observa que los productos entre ellos no coinciden.
De estos resultados se puede concluir:
1.- Solo cuando se tienen 2 números, el resultado del producto de sus mcm y MCD coincide con el resultado del producto de esos dos números.
2.- La conclusión anterior permitiría afirmar que solo cuando se tienen 2 números, de los cuales se conoce su mcm, se puede determinar su MCD si se divide el resultado del producto de esos 2 números entre su mcm. En otras palabras:
MCD (a, b) = a.b / mcm (a, b)
Explicación paso a paso:
plissss coronita