Matemáticas, pregunta formulada por luanatemis48, hace 3 meses

mepodrian ayudarhacer propiedades de potencia necesito ayudaaaaaaaaaaa​

Adjuntos:

Respuestas a la pregunta

Contestado por princess251111
1

Respuesta:

 { (- 4)}^{ - 5}  \times  {( - 4)}^{8}  \times  {( - 4)}^{ - 6}  =  {( - 4)}^{ - 5 + 8 - 6}  =  {( - 4)}^{ 8 - 11}  =  {( - 4)}^{ - 3}  =  \frac{1}{ {( - 4)}^{3} }   \\  {(x)}^{ - 8}  \times  {(x)}^{10}  \times  {(x)}^{2}  =  {(x)}^{ - 8 + 10 + 2}  =  {(x)}^{ - 8 + 12}  =  {(x)}^{4}  \\  {(23)}^{8}  \times  {(23)}^{ - 12}  \times  {(23)}^{2}  =  {(23)}^{ 8- 12 + 2}  =  {(23)}^{10 - 12}  =  {(23)}^{ - 2}  =  \frac{1}{ {(23)}^{2} }    \\  ( {(6)}^{ \frac{2}{5} }  \times  {(6)}^{ \frac{3}{10} } ) \div ({{(6)}^{ \frac{1}{2} } })^{2}  =  {(6)}^{ \frac{2}{5}  +  \frac{3}{10} }  \div  {(6)}^{ \frac{1}{2} \times 2 }  =  {(6)}^{ \frac{7}{10} }  \div  {(6)}^{1}  =  {(6)}^{ \frac{7}{10} - 1 }  =  {(6)}^{  - \frac{  3}{10} }  =  \frac{1}{ {(6)}^{ \frac{3}{10} } }  \\  ({(t)}^{ \frac{3}{5} }  \div  {(t)}^{ \frac{3}{10} } ) \div  ( { {t}^{ -  \frac{1}{2} } })^{ \frac{6}{5} }  =  {(t)}^{ \frac{3}{5} -  \frac{3}{10}  }  \div  {(t)}^{  - \frac{1}{2} \times  \frac{6}{5}  }  =  {(t)}^{ \frac{3}{10} }  \div  {(t)}^{ -  \frac{6}{10} }  =  {(t)}^{ \frac{3}{10} - ( -  \frac{6}{10} ) }  =  {(t)}^{ \frac{3}{10} +  \frac{6}{10}  }  =  {(t)}^{ \frac{9}{10} }  \\  {(27)}^{ - 2}  \times ( \frac{1}{9} )^{ - 3}  \times  \sqrt[3]{ {(3)}^{4} }  =(  { {(3)}^{3} })^{ - 2}  \times   ({ {(3)}^{ - 2} })^{ - 3}  \times  {(3)}^{ \frac{4}{3} }  =  {(3)}^{2 \times ( - 3)}  \times  {(3)}^{( - 2) \times ( - 3)}  \times  {(3}^{ \frac{4}{3} }  =  {(3)}^{ - 6}  \times  {(3)}^{6}  \times  {(3)}^{ \frac{4}{3} }  =  {(3)}^{ - 6 + 6 +  \frac{4}{3} }  =  {(3)}^{ \frac{4}{3} }   \\ (  { \frac{1}{16} })^{5}  \times  \sqrt[5]{ {(4)}^{2} }  \times  {(64)}^{ - 1}  =   ({ {(4)}^{ - 2} })^{5}  \times  {(4)}^{ \frac{2}{5} }  \times  ({ {(4)}^{ 3} })^{ - 1}  =  {(4)}^{ - 2 \times 5}  \times  {(4)}^{ \frac{2}{5} }  \times  {(4)}^{3 \times ( - 1)}  =  {(4)}^{ - 10}  \times  {(4)}^{ \frac{2}{5} }  \times  {(4)}^{ - 3}  =  {(4)}^{ - 10 +  \frac{2}{5} - 3 }  =  {(4)}^{ - 13 +  \frac{2}{5} }  =  {(4)}^{ -  \frac{63}{5} }  =  \frac{1}{ {(4)}^{ \frac{63}{5} } }   \\  {(8)}^{4}  \times  {( \frac{1}{2}) }^{ - 3}  \times  \sqrt[3]{ {(2)}^{5} }  =  ({ {(2)}^{3} })^{4}  \times(  { {(2)}^{ - 1} })^{ - 3}  \times  {(2)}^{ \frac{5}{3} }  =  {(2)}^{3 \times 4}  \times  {(2)}^{( -1 ) \times ( - 3)}  \times  {(2)}^{ \frac{5}{3} }  =  {(2)}^{12}  \times  {(2)}^{3}  \times  {(2)}^{ \frac{5}{3} }  =   {(2)}^{12 + 3 +  \frac{5}{3} }  =  {(2)}^{ \frac{50}{ 3} }  \\  {(36)}^{4}  \times {( \frac{1}{6}) }^{5}  \times  \sqrt[3]{ {(6)}^{4} }  = ( { {(6)}^{2} })^{4}  \times ( { {(6)}^{ - 1} )}^{5}  \times  {(6)}^{ \frac{4}{3} }  =  {(6)}^{2 \times 4}  \times  {(6)}^{ - 1 \times 5}  \times  {(6)}^{ \frac{4}{3} }  =  {(6)}^{8}  \times  {(6)}^{ - 5}  \times  {(6)}^{ \frac{4}{3} }  =  {(6)}^{8 - 5 +  \frac{4}{3} }  =  {(6)}^{ \frac{13}{4} }

Otras preguntas