Matemáticas, pregunta formulada por ashley773, hace 10 meses

Me pueden ayudar con esas figuras necesito saber las Medida del ángulo en el vértice de

•octágono
•decágono
•doceagono

Respuestas a la pregunta

Contestado por septimoalejandro12
2

Respuesta:

Un decágono tiene 35 diagonales, resultado que se puede obtener aplicando la ecuación general para determinar el número de diagonales de un polígono, {\displaystyle D={\tfrac {n(n-3)}{2}}}{\displaystyle D={\tfrac {n(n-3)}{2}}}; siendo el número de lados {\displaystyle n=10}{\displaystyle n=10}, tenemos:

{\displaystyle D={\frac {10(10-3)}{2}}=35}{\displaystyle D={\frac {10(10-3)}{2}}=35}

La suma de todos los ángulos internos de cualquier decágono es 1440 grados u {\displaystyle 8\pi }{\displaystyle 8\pi } radianes. Un decágono regular es un polígono de diez lados iguales y diez ángulos congruentes.

Decágono regular

Un decágono regular, es aquel que tiene sus diez lados de igual longitud y todos los ángulos internos de la misma graduación. Una característica de un decágono regular es que si se inscribe en una circunferencia el lado resulta ser la sección áurea del radio. Los ángulos internos de un decágono miden 144º o {\displaystyle 4\pi /5}{\displaystyle 4\pi /5} rad. Cada ángulo externo del decágono regular mide 36º o {\displaystyle \pi /5}{\displaystyle \pi /5} rad.

{\displaystyle P=n\cdot t=10\ t}{\displaystyle P=n\cdot t=10\ t}

El área {\displaystyle A}A de un decágono regular de lado {\displaystyle t}t se puede calcular de la siguiente manera:

{\displaystyle A={\frac {5t^{2}}{2\tan({\frac {\pi }{10}})}}\simeq 7,6942\ t^{2}}{\displaystyle A={\frac {5t^{2}}{2\tan({\frac {\pi }{10}})}}\simeq 7,6942\ t^{2}}

donde {\displaystyle \pi }\pi (pi) es la constante y {\displaystyle \tan }{\displaystyle \tan } es la función tangente calculada en radianes. O bien, en función de la apotema, {\displaystyle a_{p}}{\displaystyle a_{p}}, 2​

{\displaystyle A=10\cdot a_{p}^{2}\cdot {\frac {\sin({\frac {\pi }{10}})}{\sin({\frac {2\pi }{5}})}}=10\cdot a_{p}^{2}\cdot \tan({\frac {\pi }{10}})\simeq a_{p}^{2}\cdot 3.2492}{\displaystyle A=10\cdot a_{p}^{2}\cdot {\frac {\sin({\frac {\pi }{10}})}{\sin({\frac {2\pi }{5}})}}=10\cdot a_{p}^{2}\cdot \tan({\frac {\pi }{10}})\simeq a_{p}^{2}\cdot 3.2492}

Si se conoce la longitud de la apotema {\displaystyle a_{p}}{\displaystyle a_{p}} y el lado {\displaystyle a}a o el perímetro {\displaystyle P}P del polígono, otra alternativa para calcular el área es:

{\displaystyle A={\frac {P\cdot a_{p}}{2}}={\frac {10\cdot t\cdot a_{p}}{2}}=5(t\cdot a_{p})}{\displaystyle A={\frac {P\cdot a_{p}}{2}}={\frac {10\cdot t\cdot a_{p}}{2}}=5(t\cdot a_{p})}

El símbolo de Schläfli del decágono regular es {10} 3​.

Explicación paso a paso:


ashley773: Gracias
septimoalejandro12: no hay por que me das coronita porfa
Otras preguntas