Física, pregunta formulada por tinguriru, hace 3 meses

Me ayudan porfavor se los ruego

Adjuntos:

Respuestas a la pregunta

Contestado por LuisVerSi
2

Explicación:

v =  \frac{d}{t}  \\   \\ v  \times t = d \\  t =  \frac{d}{v}

f =  \frac{m \:  {v}^{2} }{r}  \\  \\ f \: r = m \:  {v}^{2}  \\  \\ m =  \frac{f \: r}{ {v}^{2} }

 {c}^{2}  =  {a}^{2}  +  {b}^{2}  \\   {b }^{2}  =  {c}^{2}  -  {a}^{2}  \\ b  =   \pm \sqrt{ {c}^{2}  -  {a}^{2} }

5a - 3 =  \frac{25a}{b}  \\  \\ b(5a - 3) = 25a \\  \\ b =  \frac{25a}{5a - 3}

 \frac{ {d}^{2} }{ {v}^{2} }  =  \frac{2h}{g}  \\  \\ 2h =  \frac{g \:  {d}^{2} }{ {v}^{2} }  \\  \\ h =  \frac{g \:  {d}^{2} }{2 {v}^{2} }

e_{c} = \frac{1 \: p \:  {v}^{2} }{2g}  \\  \\ 2 \: e_{c} \: g = 1 \: p \:  {v}^{2}  \\  \\  {v}^{2}  =  \frac{2 \: e_{c} \: g}{1 \: p}  \\  \\ v =  \pm \sqrt{ \frac{2 \: e_{c} \: g}{1 \: p} }

d = v_{0} \: t +  \frac{1}{2}  \: a \:  {t}^{2}  \\  \\ d - v_{0} \: t =  \frac{1}{2}  \: a \:  {t}^{2}  \\  \\ a =  \frac{2(d - v_{0} \: t)}{ {t}^{2} }

s =  \frac{1}{2}  \: b \: h \\  \\ 2s = b \: h \\  \\ b =  \frac{2s}{h}

w =  {i}^{2}  \: r \: t \\  \\  {i}^{2}  =  \frac{w}{r \: t}  \\  \\ i =  \pm \sqrt{ \frac{w}{r \: t} }

f =  \frac{k \: q_{1} \: q_{2}}{ {d}^{2} }  \\  \\ f \:  {d}^{2}  = k \: q_{1} \: q_{2} \\  \\  {d}^{2}  =  \frac{k \: q_{1} q_{2}}{f}  \\  \\ d =  \pm \sqrt{ \frac{k \: q_{1} \: q_{2}}{f} }

e_{p} =  m \: g \: h \\  \\ m =  \frac{e_{p}}{g \: h}

v_{a} - v_{b} = i \: r \\  \\ r =  \frac{v_{a} - v_{b}}{i}

Otras preguntas