Matemáticas, pregunta formulada por clespinosa9592, hace 4 meses

María tiene 120 libros y Pablo 160. Para facilitar la mudanza quieren meter sus libros en cajas lo
más grandes posibles, con el mismo número de libros y sin que se mezclen. ¿Cuántos libros
contendrán cada caja?.

Respuestas a la pregunta

Contestado por DiegoMadera450
6

Lo que tienes que hacer es sacar el factor común, tanto de 120 como 160.

Igual te resulta un poco raro explicado por aquí, pero si buscas vídeos sobre ello seguro que lo entiendes mejor.

La cosa es que tienes que ir dividiendo cada uno de los números entre 2 sucesivamente, de manera que podríamos ver algo así:

120:2=60

60:2=30

30:2=15. (Como 15 no es divisible entre 2, en este caso lo dividimos entre 3)

15:3=5. (Como 5 no es divisible ni entre 2 ni entre 3, lo dividimos entre sei mismo)

5:5=1

Por lo tanto tendríamos que 120 es 2x2x2x3x5

Ahora hacemos lo mismo con 160

160:2=80

80:2=40

40:2=20

20:2=10

10:2=5 (Como nos pasó antes, el 5 lo dividimos entre 5)

5:5=1

Por lo tanto tendríamos que

160= 2x2x2x2x2x5=2^5 x5

120=2x2x2x3x5=2^3 x3x5

Ahora lo que tenemos que hacer es hallar el maximo común divisor. En el máximo común divisor tenemos que coger los productos de 160 y 120 que estén elevados al menor exponente y que sea común a los dos lados, así que lo que tendríamos que hacer sería lo siguiente.

Ambos números tienen 5 y 2, pero tenemos que coger el que tenga menos 2, por lo tanto tendríamos que hacer lo siguiente:

m.c.d=2^3x5=8x5=40

(el 3 no lo cogemos porque no es común a los dos números, así que tenemos 2x2x2x5, lo que es lo mismo que 8x5)

La solución final es 40

Contestado por lauraperezalmenara31
0

La respuesta es 40

minimo comun multiplo

Otras preguntas