Mañana tengo examen y estamos haciendo proporcionalidades directas e indirectas, eso lo entiendo, pero cuando en un problema se tienen que aplicar las dos a la vez (directa e indirecta) no se como hacerlo.
Respuestas a la pregunta
Respuesta:
¿Cuándo son directamente proporcionales? Cuando al aumentar una de las magnitudes aumenta proporcionalmente la otra. Es decir, si al multiplicar o dividir una de ellas por un número, la otra también se multiplica o divide por ese mismo número.
Sin embargo, son inversamente proporcionales cuando al aumentar una de las magnitudes disminuye proporcionalmente la otra. Es decir, si al multiplicar una de ellas por un número la otra queda dividida por ese mismo número, o viceversa: si al dividir una de ellas entre un número la otra queda multiplicada por este número.
Ejemplo:
Al llegar al hotel nos han dado un mapa con los lugares de interés de la ciudad, y nos dijeron que 5 centímetros del mapa representaban 600 metros de la realidad. Hoy queremos ir a un parque que se encuentra a 8 centímetros del hotel en el mapa. ¿A qué distancia del hotel se encuentra este parque?
Para resolver este problema, debemos pensar en primer lugar si cumple una proporcionalidad directa o inversa.
Si en lugar de 5 centímetros hablásemos del doble de centímetros en el mapa (10 centímetros), ¿en la realidad serían más metros o menos metros?
Serían más metros: justo el doble de metros en la realidad.
Si al duplicar una magnitud (centímetros) también se duplica la otra (metros) estamos hablando de una proporcionalidad directa.
Por lo tanto, vamos a resolver el problema:
Como 5 centímetros representan 600 metros, 1 centímetro representará…
600 : 5 = 120 metros
Como 1 centímetro representa 120 metros, 8 centímetros representarán…
120 x 8 = 960 metros
Solución: El parque se encuentra a 960 metros del hotel.
Asimo3089