Los tres primeros términos de una progresión geométrica son: p, p+6, p+30. ¿Cuál es el quinto término de esta progresión?
POR FAVOR AYUDEMEN GRACIAS!!!!
Respuestas a la pregunta
Contestado por
2
El quinto término de la progresión es 512
Justificación:
En una progresión geométrica el nuevo termino se obtiene multiplicando el termino anterior por una constante
Por lo tanto términos consecutivos al dividirse deben dar el mismo numero (la constante)
Nos dan los 3 primeros términos de la progresión, entonces debe cumplirse que:
(p+6)/p = (p+30)/(p+6)
Resolvemos la ecuación y nos queda:
(p+6)^2 = p(p+30)
p^2 + 12p + 36 = p^2 +30p
12p + 36 = 30p
36 = 18p
2 = p
Ahora como sabemos que p=2 construimos la progresión:
p. p+6, p+30 es la progresión 2, 2+6, 2+30
Que es igual a: 2,8,32
Ahora dividiendo cualquier par de términos consecutivos 8/2 o 32/8 obtenemos que la constante es 4
El cuarto termino será 32*4 = 128 y el quinto termino 128*4 = 512
Otras preguntas
Matemáticas,
hace 6 meses
Informática,
hace 6 meses
Matemáticas,
hace 6 meses
Estadística y Cálculo,
hace 1 año