Matemáticas, pregunta formulada por Deathgams, hace 1 año

Los puntos P (-1/5, 3/2) y Q (3,12) son extremos de un segmento de recta. ¿Cuáles son las coordenadas del punto que divide PQ en una razón =1?

Respuestas a la pregunta

Contestado por aleidaher
3
Usamos las fórmulas :


Xr = (X1+r X2) / 1+r

yr= (Y1+rY2) / 1+r

donde X1= -1/5, X2= 3, Y1=3/2,Y2= 12, sustituimos:

Xr= [-1/5+ 1(3)] / 1+1= (-1+15/5)/ 2= (14/5) / 2 = 14/10 = 7 / 5.
Xr= 7/5

yr= [3/2 +1(12)] / 1+1= (3/2+12)/ 2= (3+24)/ 2= 27/2.
yr=27/2

El punto buscado es Pr( 7/5, 27/2)
Contestado por mafernanda1008
0

El punto que divide a PQ en una razón r = 1 es igual a (14/30, 27/4)

¿Cómo dividir el segmento en una razón dado?

Si tenemos un segmento que es formado por los extremos A(x1,y1) y B(x2,y2) y queremos dividirlos en una razón r, entonces tenemos que el punto (x,y) que divide en este razón es igual a:

x = (x1 + rx2)/(1 + r)

y = (y1 + ry2)/(1 + r)

Cálculo del punto que divide al segmento PQ en razón 1

Como la razón es 1 entonces será el punto medio entre P y Q, que esto es:

x = (x1 + 1*x2)/(1 + 1) = (x1 + x2)/2

y = (y1 + 1*y2)/(1 + 1) = (y1 + y2)/2

El punto es entonces:

x = (3 - 1/5)/2 = 14/30

y = (12 + 3/2)/2 = 27/4

Visita sobre puntos y rectas en https://brainly.lat/tarea/23920768

Adjuntos:
Otras preguntas