Matemáticas, pregunta formulada por orozcojulisa377, hace 10 meses

Los lados de un triángulo miden 20 cm y 12 cm y forman un ángulo de 120 °. Calcule la medida del tercer lado
PLSsssssss ayudaaaaaaaaa

Respuestas a la pregunta

Contestado por arkyta
7

El tercer lado del triángulo mide 28 centímetros

Se trata de un problema trigonométrico en un triángulo cualesquiera.  En este caso de trata de un triángulo oblicuángulo

Para resolver este ejercicio vamos a aplicar el teorema del coseno

¿Qué es el Teorema del Coseno?

El teorema del coseno, llamado también como ley de cosenos es una generalización del teorema de Pitágoras en los triángulos.

El teorema relaciona un lado de un triángulo cualquiera con los otros dos y con el coseno del ángulo formado por esos dos lados.

El teorema del coseno dice:

Dado un triángulo ABC cualquiera siendo α, β y γ los ángulos, y a, b y c los lados respectivamente opuestos a estos ángulos,

Entonces, se cumplen las relaciones:

\boxed {\bold  {  a^{2}  =  b^{2}  + c^{2}    - 2 \ . \ b \  . \ c \ . \ cos(\alpha   )     }}}

\boxed {\bold  {  b^{2}  =  a^{2}  + c^{2}    - 2 \ . \ a \  . \ c \ . \ cos(\beta   )     }}}

\boxed {\bold  {  c^{2}  =  a^{2}  + b^{2}    - 2 \ . \ a \  . \ b \ . \ cos(\gamma   )     }}}

Nota: Se dice que es una generalización del teorema de Pitágoras porque si uno de los ángulos es recto, el triángulo es rectángulo, siendo la hipotenusa el lado opuesto a dicho ángulo y se obtiene el teorema de Pitágoras al aplicar el del coseno.

Por ejemplo, si α = 90º, entonces, la primera de las tres fórmulas anteriores queda como,

a² + b² = c²

Siendo a la hipotenusa del triángulo

Solución

Hallando la longitud del tercer lado

Por el teorema del coseno podemos expresar

\boxed {\bold  {  c^{2}  =  a^{2}  + b^{2}    - 2 \ . \ a \  . \ b \ . \ cos(\gamma   )     }}}

\large\textsf{Reemplazamos valores  }

\textsf{Quitamos las unidades para faciltaci\'on  }

\boxed {\bold  {  c^{2}  =  20^{2}  + 12^{2}    - 2 \ . \ 20 \  . \ 12 \ . \ cos(120\°   )     }}}

\boxed {\bold  {  c^{2}  =  400 + 144   - \ . 480\ cos(120\°   )     }}}

\boxed {\bold  {  c^{2}  =  544   - 480\ . \ -0,5    }}}

\boxed {\bold  {  c^{2}  =  544   +240    }}}

\boxed {\bold  {  c^{2}  =  784    }}}

\boxed {\bold  {\sqrt{  c^{2}    }     = \sqrt{784}   }}}

\boxed {\bold  { c   = \sqrt{784}   }}}

\large\boxed {\bold  {  c  =  \  28 \ cent\'imetros    }}}

Otras preguntas