Matemáticas, pregunta formulada por faty171, hace 1 año

los angulos de un triangulo guardan entre si la razon 12:4:2 . determine la medida de angulo mayor

Respuestas a la pregunta

Contestado por angiemontenegr
20


Tenemos.

Teorema.
Loa ángulos internos de un triángulo suman 180°


El valor de los ángulos es de:

Angulo mayor = 12x
Angulo intermedio = 4x
Angulo menor = 2x

12x + 4x + 2x = 180°
18x = 180°
x = 180°/18
x = 10°
El ángulo mayor = 12x = 12*10  = 120°

Respuesta.
El ángulo mayor mide 120°
Contestado por Usuario anónimo
4
Los ángulos de un triangulo guardan entre si la razón 12:4:2 . determine la medida de angulo mayor.

Antes que nada debemos saber que: La suma de los ángulos internos de un triángulo suman 180°.

Vamos a asignar una variable a cada número dado:

Sea le primer ángulo (mayor) = 12T
Sea el segundo ángulo = 4T
Sea el tercer ángulo = 2T

Planteamos una ecuación y calculamos dichos ángulos:
12T + 4T + 2T = 180°
18T = 180°
T = 180°/18
T = 10°

El valor de T lo reemplazamos en cada ángulo para hallar sus respectivas medidas:
12T = 12 (10°) = 120°
4T = 4 (10°) = 40°
2T = 2 (10°) = 20°

Rpt. Los ángulos son: 120°, 40° y 20°

El ángulo mayor mide 120°


COMPROBAMOS LA SOLUCIÓN.
12T + 4T + 2T = 180°
12 (10°) + 4 (10°) + 2 (10°) = 180°
120° + 40° + 20° = 180°
180° = 180°
Otras preguntas