Logaritmos, alguien me ayuda porfa
Respuestas a la pregunta
Respuesta: log { [ 3 . [ (y^5)/4 ] ] / [ w^(1/2) ] [(7^7)/x²]}
Explicación paso a paso:
5log y - log 4 + log 3 - (1/2)log w - 7log 7 + 2 log x ........... (*)
Se sabe que:
log (B^n) = n log B
log A + log B = log AB
log A - log B = log (A/B)
Entonces:
5 log y = log (y^5)
5log y - log 4 = log [ (y^5)/4 ]
En la expresión (*), queda:
log [ (y^5)/4 ] + log 3 - (1/2)log w - 7log 7 + 2 log x
= log [ 3 . [ (y^5)/4 ] ] - (1/2)log w - 7log 7 + 2 log x
= log [ 3 . [ (y^5)/4 ] ] - log [ w^(1/2) ] - log (7^7) + log x²
= log [ 3 . [ (y^5)/4 ] ] / [ w^(1/2) ] - log (7^7) + log x²
= log [ 3 . [ (y^5)/4 ] ] / [ w^(1/2) ] - [log (7^7) - log x² ]
= log [ 3 . [ (y^5)/4 ] ] / [ w^(1/2) ] - [ log [ (7^7)/x² ]
= log { [ 3 . [ (y^5)/4 ] ] / [ w^(1/2) ] [(7^7)/x²]}