Matemáticas, pregunta formulada por luiggi420, hace 1 año

log(4,5-x) = log 4,5 - log x​

Respuestas a la pregunta

Contestado por Infradeus10
0

Respuesta:       \quad x=1.5,\:x=3\right)

Pasos:

log\left(4.5-x\right)\:=\:log\:4.5\:-\:log x

\log _{10}\left(4.5-x\right)=\log _{10}\left(4.5\right)-\log _{10}\left(x\right)

\mathrm{Sumar\:}\log _{10}\left(x\right)\mathrm{\:a\:ambos\:lados}

\log _{10}\left(4.5-x\right)+\log _{10}\left(x\right)=\log _{10}\left(4.5\right)-\log _{10}\left(x\right)+\log _{10}\left(x\right)

\mathrm{Simplificar}

\log _{10}\left(4.5-x\right)+\log _{10}\left(x\right)=\log _{10}\left(4.5\right)

\mathrm{Aplicar\:las\:propiedades\:de\:los\:logaritmos}:\quad \log _c\left(a\right)+\log _c\left(b\right)=\log _c\left(ab\right)

\log _{10}\left(4.5-x\right)+\log _{10}\left(x\right)=\log _{10}\left(\left(4.5-x\right)x\right)

\log _{10}\left(\left(4.5-x\right)x\right)=\log _{10}\left(4.5\right)

\left(4.5-x\right)x=4.5

x=\frac{4.5-\sqrt{2.25}}{2},\:x=\frac{4.5+\sqrt{2.25}}{2}

\left(\mathrm{Decimal}:\quad x=1.5,\:x=3\right)

Otras preguntas