Límites y continuidad
Calcular los siguientes límites:
Respuestas a la pregunta
SOLUCIÓN :
1 ) lim v→ 3 √v+1 - 2 / v -3 = √3+1 - 2 /3-3 =0/0
lim v→3 ( √v+1 - 2 )(√v+1 + 2 )/(v-3 )(√v+1 + 2 )=
lim v→3 (v-3)/(v-3)*(√v+1 +2 ) =
lim v→3 1/(√v+1 +2) = 1/(√3+1 + 2 ) = 1/4 .
2 ) lim x→1 (x³- 1 )/(x²- 1 )= 1³-1/1²-1 =0/0
lim x→1 ( x-1 )(x²+ x +1 )/( x-1 )(x+1 ) =
lim x→1 ( x²+ x+1 )/( x+1 )=
= 1²+1+1 /1+1= 3/2
3 ) lim x→∞ ( 3x -√4x+2 ) = ∞-∞
lim x→∞ ( 3x - √4x+2 )*( 3x + √4x+2 )/( 3x + √4x+2 )=
lim x→∞ (9x²- 4x - 2)/( 3x + √4x+2 )= ∞/∞
lim x→∞ ( 9x²/x² - 4x/x²-2/x²)/( 3x/x²+ √( 4x/x⁴+ 2/x⁴)
lim x→∞ ( 9 - 4/x - 2/x²)/( 3/x + √( 4/x³+ 2/x⁴ ) = 9/0 = ∞
4 ) lim x→0 1/x * senx/3 = 1/0 *sen 0/3 = ind.
lim x→0 sen(x/3)/x = lim x→0 sen(x/3)/3x/3 =
= 1/3 * lim x→0 sen(3/x)/(x/3) = 1/3 * 1 = 1/3 .
como lim x→0 senx/x = 1 .