las revoluciones por minuto (rpm) del motor de una moto estan dadas por la funcion f(x)= -x^2+252x, donde x corresponda a la velocidad de la moto en km/h
si f(x)= 12512, determine los valores de x y luego interprete los resultados
determine a que velocidad de la moto se alcanzan las maximas revoluciones por minuto
Respuestas a la pregunta
Los valores de velocidad de la moto(x) son : x = 68 Km/h ;x = 184 Km/h
La velocidad de la moto, para la cual se alcanzan las máxima revoluciones por minuto es : x = 126 rpm
función : f(x)= -x^2+252x
x = velocidad de la moto en Km/h
f(x) = revoluciones por minuto (rpm) del motor de un moto
f(x) = 12512
x =? interpretar resultados
x =? f (x) las máximas revoluciones por minuto
12512 = -x^2+252x
x² -252x + 12512 =0 al resolver resulta:
x = 68 Km/h x = 184 Km/h velocidades
Para calcular la velocidad de la moto, para la cual se alcanzan las máximas revoluciones por minuto se aplica la derivada de la función :
f(x)= -x^2+252x
f'(x) = -2x +252
f'(x) = 0
-2x +252 =0
x = 252/2
x = 126 la velocidad de la moto es : x = 126 rpm