las moléculas de oxígeno a una temperatura de 25 grados, ¿se mueven más rápido o más despacio si aumento la temperatura del gas? ¿por qué?
Respuestas a la pregunta
Explicación:En esta sección estudiaremos un sistema de muchas partículas y consideraremos la conducta promedio de sus constituyentes microscópicos. En particular, se calculará la presión ejercida por el sistema de partículas en términos de los choques que experimentan las moléculas del gas contra las paredes del recipiente.
El objetivo del programa, es el de relacionar las variables presión, volumen y temperatura, en un modelo de gas ideal bidimensional, así como la de conocer la interpretación cinética de la presión y de la temperatura de un gas.
El gas ideal bidimensional está encerrado en un recipiente que dispone de un émbolo móvil, de modo que se puede aumentar o disminuir el volumen (área) del gas. Las moléculas se colocan inicialmente en posiciones aleatorias, las direcciones de sus velocidades también son aleatorias y sus magnitudes son iguales y proporcionales a la raíz cuadrada de la temperatura. Tenemos de este modo un sistema de partículas en equilibrio a la temperatura T, que chocan elásticamente entre sí y con las paredes del recipiente.
El programa calcula el cambio de momento lineal que experimentan las moléculas al chocar con el émbolo y divide este cambio entre el tiempo. El cociente es una medida de la fuerza que ejerce el émbolo sobre las moléculas del gas, o también se puede interpretar como una medida de la presión del gas.
El programa interactivo, también nos permite observar el vector velocidad asociado a cada molécula y cómo dicho vector cambia de orientación pero no de módulo cuando una molécula choca con la pared del recipiente, pero cambia de módulo y dirección cuando se produce una colisión entre dos moléculas.
Vemos que partiendo de una distribución inicial en el que las velocidades de las moléculas son iguales en módulo, al cabo de un cierto tiempo unas moléculas tienen mayor velocidad y otras moléculas tienen menor velocidad. La distribución de velocidades cuando se alcanza el equilibrio sigue la ley de distribución de Maxwell.