Matemáticas, pregunta formulada por jimenezromero, hace 4 meses

La velocidad v (en pies por segundo) de un auto está en función lineal del tiempo t (en segundos)
10 ≤ t ≤ 30. Si después de cada segundo, la velocidad del auto ha aumentado 5 pies por
do, y si después de 20 segundos es de 80 pies por segundo, ¿cuál será la velocidad del auto
30 segundos? Determine la función v=V(t)
e5 años la población de una pequeña comunidad era de 15,000 personas. Debido al desarrollo
rial la población creció a 21,000 personas. Luego viendo que la población P está relacionada
nente con el tiempo t (años), exprese a P como función del tiempo. ¿cuándo llegará la
ión a 30000 habitantes?La velocidad v (en pies por segundo) de un auto está en función lineal del tiempo t (en segundos
para 10 ≤ t ≤ 30. Si después de cada segundo, la velocidad del auto ha aumentado 5 pies por
segundo, y si después de 20 segundos es de 80 pies por segundo, ¿cuál será la velocidad del auto
a los 30 segundos? Determine la función v=v(t)

Respuestas a la pregunta

Contestado por mafernanda1008
0

La velocidad a los 30 segundos es igual a 130 pies/seg y la población llega a 30000 habitantes luego de 12.5 años

1. Sea "Vo" la velocidad inicial del auto a los 10 segundos tenemos que la aceleración es 5 pies/seg

Vf = Vo + 5 pies/seg²*t

Tenemos que después de 20 segundos ha recorrido 10 segundos,  es 80 pies /seg, entonces:

80 pies/Seg = Vo  + 5 pies/seg²*10 seg

80 pies/seg - 50 pies/seg = Vo

Vo = 30 pies/seg

2. Tenemos que la población es igual a 15000 personas (población inicial) y en 5 años crece a 21000, si la relación es lineal, como crece 6000 habitantes, entonces por año crece:

6000/5 = 1200 habitantes

La función es:

y = 15000 + 1200x

Llega a 30000 habitantes:

30000 = 15000 + 1200x

1200x = 15000

x = 15000/1200

x = 12,5 años

Luego tenemos que a los 30 segundos la velocidad es:

Vf = 30 pies/seg + 5 pies/seg²*20 seg

Vf = 130 pies/seg

Otras preguntas