la velocidad final es independiente de la masa del objeto? porque?
Respuestas a la pregunta
Respuesta:
La segunda ley de Newton establece que la aceleración de un objeto es inversamente proporcional a la masa del objeto. Cuanto mayor sea la masa de un objeto, menor será su aceleración si se le aplica una fuerza neta dada. A veces se llama masa inercial, para enfatizar que mide la inercia, esto es, la resistencia a alterar el estado de movimiento o reposo del objeto. En otras palabras, la masa es una propiedad de los objetos que se opone a la aceleración cuando se aplica una fuerza. Todo esto se reúne en una expresión tan simple como F = m·a., donde F es la fuerza neta.que actúa sobre el objeto, m es la masa (inercial) y a la aceleración resultante.
A partir de la segunda ley de Newton podemos afirmar que una fuerza constante producirá una aceleración constante. Por tanto, si una vez que un objeto se está moviendo, se le continúa empujando con la misma fuerza, seguirá acelerándose, yendo más y más rápido. Y, según la fórmula de Newton, no existe límite a la velocidad que puede alcanzar.
Pero esto es inconsistente con la teoría de la relatividad, que impone un límite de velocidad para objetos en el espacio de c = 299.792.458 m/s, la velocidad de la luz en el vacío. Hay que alterar pues la expresión de la segunda ley de Newton para que tenga en cuenta este hecho.
Einstein lo hizo afirmando que m, la masa inercial, no permanece constante sino que aumenta a medida que aumenta la velocidad, un hecho que se observa experimentalmente, por ejemplo, en partículas elementales a alta velocidad.
Si la masa inercial aumenta con la velocidad eso quiere decir que se requiere cada vez más fuerza para conseguir la misma aceleración, y finalmente haría falta una fuerza infinita para intentar alcanzar la velocidad de la luz. Einstein dedujo de los dos postulados de la teoría de la invariancia que la inercia de un objeto en movimiento aumenta con la velocidad, y lo hace de forma completamente análoga a la que empleó para la dilatación del tiempo. Como cabía esperar, llega a una expresión equivalente a la que encontró para el tiempo: mm = me/√(1-v2/c2), donde mm es la masa del objeto en movimiento relativo, y me es la masa del mismo objeto antes de que empiece a moverse, estático. Muy a menudo a me se la llama masa en reposo. [1]
De forma similar a nuestro análisis de la expresión para los intervalos de tiempo, encontramos que, a medida que aumenta la velocidad de un objeto, la masa observada a partir de un marco de referencia estacionario también aumenta. Alcanzará una masa infinita (o indefinida) si alcanza la velocidad de la luz. Esta es otra razón por la cual no puede hacerse que algo que posea masa alcance la velocidad de la luz; requeriría, como decíamos antes, aplicar una fuerza infinita para acelerarla a esa velocidad.
Por el mismo argumento, los objetos que sí se mueven a la velocidad de la luz, como la luz misma, deben tener masa
Copia a