La suma de las diagonales de un rombo es 14 cm y su diferencia es 2 cm. El área del rombo es:
Respuestas a la pregunta
Respuesta:
24cm^2
Explicación paso a paso:
diagonales = x, y
x + y = 14 +
x - y = 2
2x=16
x=8 8-y=2
6=y
Área = 8.6/2= 24
El área del rombo cuya suma de diagonales es 14 cm y su diferencia es 2 cm es 24 cm²
Las formulas y el procedimiento para resolver este ejercicio de geometría es:
a = (d * D)/2
Donde:
- a = área del rombo
- D = diagonal mayor del rombo
- d = diagonal menor del rombo
Aplicamos las ecuaciones según los datos y tenemos dos variables con dos incógnitas:
D + d = 14
D - d = 2
Despejamos la variable (D) de la primera ecuación y tenemos:
D + d = 14
D = 14 - d
Sustituimos el valor de (d) en la otra ecuación y tenemos que:
D - d = 2
14 - d - d = 2
14 - 2d = 2
2d = 14 - 2
2d = 12
d = 12/2
d = 6
Sustituyendo (d) en una de las ecuaciones de (D) tenemos que:
D = 14 - d
D = 14 - 6
D = 8
Aplicamos la formula del área del rombo y tenemos que:
a = (d * D)/2
a = (6 cm * 8 cm)/2
a = (48 cm²)/2
a = 24 cm²
¿Qué es una ecuación?
Se puede decir que la ecuación es la igualdad existente entre expresiones algebraicas las cuales tienen al menos una incógnita o variable.
¿Qué es área?
En geométrica el área se denomina a la medida del espacio que ocupa un cuerpo delimitado por un entorno llamado perímetro, la misma se expresa en unidades de longitud al cuadrado ejemplo cm2, m2
Aprende mas sobre ecuación en: brainly.lat/tarea/22930045 y brainly.lat/tarea/33389589
Aprende más sobre área del rombo en: brainly.lat/tarea/4471543
#SPJ2