la raíz cuadrada de r¹⁰
Respuestas a la pregunta
Respuesta:
as raíces cuadradas son expresiones matemáticas que surgieron al plantear diversos problemas geométricos como la longitud de la diagonal de un cuadrado. El Papiro de Ahmes datado hacia 1650 a. C., que copia textos más antiguos, muestra cómo los egipcios extraían raíces cuadradas.4
En la antigua India, el conocimiento de aspectos teóricos y aplicados del cuadrado y la raíz cuadrada fue, al menos, tan antiguo como los Sulba Sutras, fechados entre el 500 y el 300 a. C. Un método para encontrar muy buenas aproximaciones a las raíces cuadradas de 2 y 3 es dado en el Baudhayana Sulba Sutra.5Aryabhata (476-550) en su tratado Aryabhatiya (sección 2.4), dio un método para encontrar la raíz cuadrada de números con varios dígitos.
Los babilonios aproximaban raíces cuadradas haciendo cálculos mediante la media aritmética reiteradamente. En términos modernos, se trata de construir una sucesión {\displaystyle a_{0},a_{1},a_{2},a_{3},\dots }a_0, a_1, a_2, a_3, \dots dada por:6
{\displaystyle a_{n+1}={\frac {1}{2}}\left(a_{n}+{\frac {a}{a_{n}}}\right).}a_{n+1}= \frac{1}{2}\left(a_n+\frac{a}{a_n}\right).
Puede demostrarse que esta sucesión matemática converge de manera que {\displaystyle a_{n}\to {\sqrt {a}}}a_n \to \sqrt{a} (como valor inicial {\displaystyle a_{0}}a_{0} puede tomarse con buena aproximación el entero más cercano al valor de la raíz cuadrada). Las raíces cuadradas fueron uno de los primeros desarrollos de las matemáticas, siendo particularmente investigadas durante el periodo pitagórico, cuando el descubrimiento de que la raíz cuadrada de 2 era irracional (inconmensurable) o no expresable como cociente alguno, lo que supuso un hito en la matemática de la época.
Inicialmente se demostró la utilidad de la raíz cuadrada para la resolución de problemas trigonométricos y geométricos, como el cálculo de la longitud de la diagonal de un cuadrado o el teorema de Pitágoras. Posteriormente ganó utilidad para operar con polinomios y resolver ecuaciones de segundo grado o superior, y son en la actualidad una de las herramientas matemáticas más elementales.
Explicación paso a paso: