Matemáticas, pregunta formulada por fernandavargas8059, hace 11 meses

La medida de los ángulos internos de un triángulo están en proporción de 4, 6 y 8. Calcula el menos de los ángulos internos de dicho triángulo.

Respuestas a la pregunta

Contestado por sebastianbg25
17

Respuesta:

40

Explicación paso a paso:

Suma de ángulos internos: 180

4x + 6x + 8x = 180

18x = 180

X = 10

Reemplazando:

4x = 4(10) = 40

6x = 6(10) = 60

8x = 8(10) = 80

El menor es 40

Contestado por linolugo2006
1

El menor ángulo del triángulo de lados proporcionales a los números  4,  6  y  8  es  29°.

Explicación paso a paso:

La semejanza de triángulos se basa en que dos triángulos cuyos lados son proporcionales tienen los mismos ángulos.

Por ello, en la gráfica anexa se muestra el triángulo de lados  4,  6  y  8,  y en él nos vamos a apoyar para resolver el problema.

Conocemos las longitudes de los lados y conocemos que el menor ángulo en un triángulo es el enfrentado al lado más corto. Eso significa que el ángulo de interés es el marcado en la gráfica con la letra  A.

Aplicaremos el Teorema del Coseno para conocer el valor del ángulo en A. Este teorema permite relacionar los lados de un triángulo con su ángulo opuesto de la siguiente forma:

c²  =  a²  +  b²  -  2 a b Cos(A)                (la nomenclatura es de la gráfica)

Sustituyendo los valores conocidos

(4)²  =  (6)²  +  (8)²  -  2 (6) (8) Cos(A)        ⇒

16  =  36  +  64  -  96 Cos(A)        ⇒

Cos(A)  =  84 / 96        ⇒        A  =  29°

El menor ángulo del triángulo de lados proporcionales a los números  4,  6  y  8  es  29°.

Para más aplicaciones del Teorema del Coseno, visitar:  brainly.lat/tarea/36787997

Adjuntos:
Otras preguntas