Matemáticas, pregunta formulada por Usuario anónimo, hace 11 meses

La media aritmética de dos números es 5 y la media armónica de los mismos es 16/5. Halla los números. alguien ???

Respuestas a la pregunta

Contestado por JulianDavidCampos
20

Respuesta:

8 y 2

Explicación paso a paso:

 

La fórmula para la media aritmética es: Sumatoria de los n números / cant de números = Media aritmética. 

Reemplazamos

x + y / 2 = 5 

x + y = 5*2

x + y = 10

Las posibilidades serían: (1+9)(2+8)(3+7)(4+6)

Vamos con la media armónica cuya fórmula es: Cant. de elementos / suma de las inversas = Media armónica

Reemplazamos:

2 / 1/x + 1/y = 16/ 5 

2 / y + x/ x*y = 16/5

Aplicando doble C queda:

2(x*y) / x+y = 16/5

x+y es dato ya dado por el problema = 10, 16/5 no tiene como denominador 10 para que así sea debemos multiplicar por 2 a ambos factores, quedaría: 32/10 

Ver más en Brainly.lat - https://brainly.lat/tarea/9560440#readmore

Contestado por mafernanda1008
3

Sean "a" y "b" los dos números que cumplen con el enunciado tenemos que la media aritmética es 15

(a + b)/2 = 15

a + b = 30

1. a = 30 - b

La media armónica es 16/5 = 3.2

2/(1/a + 1/b) = 3.2

2/3.2 = 1/a + 1/b

0.625 = 1/a + 1/b

0.625 = (b + a)/(ab)

0.625(ab) = b + a

Sustituimos la ecuación 1:

0.625(30 - b)(b) = b + 30 - b

18.75b - 0.625b² = 30

0.625b² - 18.75b + 30 = 0

b² - 30b + 48 = 0

Las soluciones son:

15 + √177 ≈ 28.30

15 - √177 ≈ 1.69

Puedes visitar: https://brainly.lat/tarea/9906774

Adjuntos:
Otras preguntas