Matemáticas, pregunta formulada por sicodelico1, hace 1 año

La gráfica de la función cuadrática cuya ecuación es f(x)=4x2+9, corta al eje X en:

x=−32
No corta al eje x
x=32,x=−32
x=−23

Respuestas a la pregunta

Contestado por luisfernando200031
2
La ecuación f(x)=4x^2+9 No corta al eje x

Esto lo podemos determinar hallando las raíces de la función cuadratica utilizando la fórmula cuadratica que es la que se ve en la imagen, los valores de a, b y c son los coeficientes, recordemos que la ecuación cuadratica es de la siguiente forma:

ax^2 + bx + c

Como b es igual a 0 y en este caso a>0 y c>0 es decir positivos, nos quedaría una raíz negativa y esto nos da un número imaginario por tanto no hay raíces en x para esta ecuación...
Las raíces son los puntos en donde la función corta con el eje x
Al no tener raíces podemos determinar que la función f(x)=4x^2+9 no corta el eje x
Adjuntos:
Contestado por paudervillacorte
1

Para hallar los cortes con el eje "x" se iguala a cero.

4x^2 +9=0

4x^2= -9

x^2 = -9/4


Se extrae raíz cuadrada  en ambos miembros.

! raiz(x^2)! = raiz(-9/4)

x= +- raiz(-9/4)


Las raices cuadradas de números negativos no se encuentran en los números reales, por lo que se concluye que la parábola no corta al eje x.


Ver más en Brainly.lat - https://brainly.lat/tarea/5439533#readmore

Otras preguntas