Matemáticas, pregunta formulada por corinaquinter, hace 1 mes

La empresa de exportación Exportone paga a sus vendedores US$20 por artículo vendido más una cantidad fija de US$600. La empresa Exportup, que es la competencia, paga US$25 por artículo y US$300 fijos. ¿Cuántos artículos debe vender el vendedor de la competencia para ganar más dinero que el primero? (1,5 puntos)​

Respuestas a la pregunta

Contestado por dianacarolinallaucem
3

Respuesta:

yd6ddddddddddddddddd


corinaquinter: sea x = el número de artículos vendidos. Vendedor de la empresa Exportone recibe = 20x + 600. Vendedor de la empresa Exportup recibe = 25x + 300. Planteando la ecuación, según las condiciones del problema. 25X + 300 > 20X + 600. 25X - 20X > 600-300. 5X > 300. X > 300/5. X= 60. Respuesta: El vendedor de la competencia debe vender como mínimo 61 artículos para ganar más dinero que el vendedor de la empresa Exportone.
Contestado por carbajalhelen
3

La cantidad de artículos que debe vender el vendedor de la competencia para ganar más dinero que el primero es:

60

¿Qué es una ecuación lineal?

Un modelo lineal es la representación de los datos de un problema en función de una recta.

La recta se construye con dos puntos por los que pase dicha recta o si es conocida su pendiente y un punto.

La expresión analítica de una recta tiene las siguientes formas:

  • Ecuación pendiente - ordenada al origen: y = mx + b
  • Ecuación punto pendiente: y - y₀ = m(x - x₀)
  • Ecuación general: ax + by = 0

¿Cuántos artículos debe vender el vendedor de la competencia para ganar más dinero que el primero?

Cada empresa tiene una expresión algebraica de venta.

1er empresa:

V(x) = 20x + 600

2da empresa:

V(x) = 25x + 300

Igualar;

20x + 600 = 25x + 300

25x - 20x = 600 - 300

5x = 300

x = 300/5

x = 60

Puedes ver más sobre ecuación lineal aquí: https://brainly.lat/tarea/11236247

#SPJ5

Adjuntos:
Otras preguntas