Juan, Paul, David y Andrea van a correr a un parque todos los días, Juan le da 1 vuelta al parque en 2 minutos, Paul le da 3 vueltas al parque en 7 minutos con 30 segundos, David le da 4 vueltas en 9 minutos con 20 segundos y Andrea le da 2 vueltas al mismo parque en 4 minutos con 20 segundos. Si todos parten al mismo tiempo y del mismo lugar, contestar:
¿Quién es el más y el menos veloz?
¿Cuánto tardaría en encontrarse todos en el punto de partida?
Respuestas a la pregunta
Respuesta:
Solución
Como los tiempos están en minutos y en segundos, lo primero que haremos es escribirlos en segundos.
Juan tarda 2 minutos en dar una vuelta, es decir, su tiempo es de
Problemas resueltos de aplicación del mínimo común múltiplo (mcm) y del Máximo Común Divisor (MCD). Problemas para secundaria. ESO.
Paul tarda 7 minutos y 30 segundos en dar tres vueltas. Este tiempo en segundos es
Problemas resueltos de aplicación del mínimo común múltiplo (mcm) y del Máximo Común Divisor (MCD). Problemas para secundaria. ESO.
Luego su tiempo es de
Problemas resueltos de aplicación del mínimo común múltiplo (mcm) y del Máximo Común Divisor (MCD). Problemas para secundaria. ESO.
David tarda 9 minutos y 20 segundos en dar 4 vueltas. En segundos,
Problemas resueltos de aplicación del mínimo común múltiplo (mcm) y del Máximo Común Divisor (MCD). Problemas para secundaria. ESO.
Luego su tiempo es de
Problemas resueltos de aplicación del mínimo común múltiplo (mcm) y del Máximo Común Divisor (MCD). Problemas para secundaria. ESO.
Andrea tarda 4 minutos y 20 segundos en dar 2 vueltas. En segundos,
Problemas resueltos de aplicación del mínimo común múltiplo (mcm) y del Máximo Común Divisor (MCD). Problemas para secundaria. ESO.
Luego su tiempo es de
Problemas resueltos de aplicación del mínimo común múltiplo (mcm) y del Máximo Común Divisor (MCD). Problemas para secundaria. ESO.
Con lo que tenemos, ya podemos saber que el más veloz es Juan y el menos veloz es Paul.
Cada uno de los atletas se encuentra en la salida cuando ha pasado el tiempo que tarda en dar una vuelta completa. Por tanto, el tiempo en el que los cuatro se encuentran en la salida es un múltiplo común de los tiempos. Como queremos saber la primera vez que esto ocurre, calculamos el mínimo de los múltiplos. Luego debemos calcular el m.c.m.:
Descomponemos los números:
Problemas resueltos de aplicación del mínimo común múltiplo (mcm) y del Máximo Común Divisor (MCD). Problemas para secundaria. ESO.
El m.c.m. se calcula multiplicando los factores «comunes y no comunes al mayor exponente»:
Problemas resueltos de aplicación del mínimo común múltiplo (mcm) y del Máximo Común Divisor (MCD). Problemas para secundaria. ESO.
Escribimos los segundos en minutos:
Problemas resueltos de aplicación del mínimo común múltiplo (mcm) y del Máximo Común Divisor (MCD). Problemas para secundaria. ESO.
Es probable que dejen de correr antes de que lleguen a encontrarse en la meta porque difícilmente estarán 910 minutos seguidos corriendo.
Explicación paso a paso: